
# Experimental Aspects of Precision m<sub>W</sub> Measurements at High-Luminosity and Highly Polarizable Lepton Colliders





Graham W. Wilson, University of Kansas, Snowmass EF Electroweak Workshop, Duke, February 19th 2013

### Plan

- Brief Introduction to m<sub>w</sub> Measurement Basics
- Experimentation at Lepton Colliders with Emphasis on ILC.
  - => get appreciation of systematic issues
- Prospects for m<sub>W</sub> Measurement
  - Threshold
  - WW in continuum
  - Single-W in continuum
- Conclusion

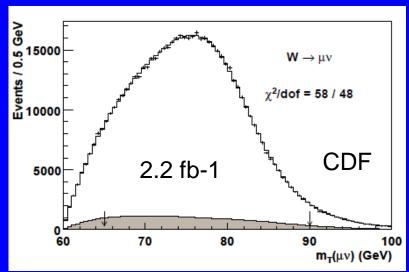
## Current Status of m<sub>W</sub> and m<sub>Z</sub>

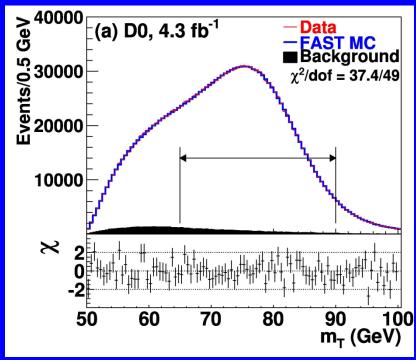
| VALUE (GeV)                  | EVTS  | DOCUMENT ID           |      | TECN | COMMENT                                      |
|------------------------------|-------|-----------------------|------|------|----------------------------------------------|
| 80.385± 0.015 OUR F          | IT    |                       |      |      |                                              |
| 80.387± 0.019                | 1095k | <sup>1</sup> AALTONEN |      |      | $E_{\rm cm}^{p\overline{p}}=1.96~{\rm TeV}$  |
| 80.367± 0.026                | 1677k | <sup>2</sup> ABAZOV   |      |      | $E_{\rm cm}^{p\overline{p}}=1.96~{\rm TeV}$  |
| 80.401± 0.043                | 500k  | <sup>3</sup> ABAZOV   | 09AB | D0   | $E_{\rm cm}^{p\overline{p}}=1.96~{\rm TeV}$  |
| $80.336 \pm 0.055 \pm 0.039$ | 10.3k | <sup>4</sup> ABDALLAH | 08A  | DLPH | $E_{\rm cm}^{\rm ee} = 161-209 {\rm GeV}$    |
| $80.415 \pm 0.042 \pm 0.031$ | 11830 | <sup>5</sup> ABBIENDI | 06   | OPAL | $E_{cm}^{ee} = 170-209 \text{ GeV}$          |
| $80.270 \pm 0.046 \pm 0.031$ | 9909  | <sup>6</sup> ACHARD   | 06   | L3   | $E_{\rm cm}^{\it ee}$ = 161–209 GeV          |
| 80.440± 0.043±0.027          | 8692  | <sup>7</sup> SCHAEL   | 06   | ALEP | $E_{\rm cm}^{\it ee} = 161-209 \; {\rm GeV}$ |
| 80.483± 0.084                | 49247 | <sup>8</sup> ABAZOV   |      |      | $E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV       |
| 80.433± 0.079                | 53841 | <sup>9</sup> AFFOLDER | 01E  | CDF  | $E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV       |

 $\Delta M/M = 1.9 \times 10^{-4}$ 

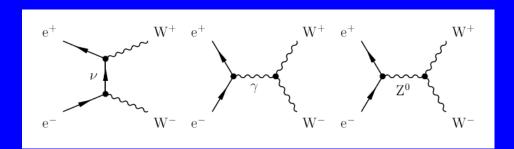
3 fb <sup>-1</sup>

| VALUE (GeV)              | EVTS  | DOCUMENT ID           |             | TECN | COMMENT                                      |
|--------------------------|-------|-----------------------|-------------|------|----------------------------------------------|
| 91.1876±0.0021 OUR F     | T     |                       |             |      |                                              |
| $91.1852 \!\pm\! 0.0030$ | 4.57M | <sup>1</sup> ABBIENDI | 01A         | OPAL | $E_{\rm cm}^{\rm ee} = 88 - 94 \; {\rm GeV}$ |
| $91.1863 \pm 0.0028$     | 4.08M | <sup>2</sup> ABREU    | 00F         | DLPH | E <sup>ee</sup> <sub>cm</sub> = 88–94 GeV    |
| $91.1898 \!\pm\! 0.0031$ | 3.96M | <sup>3</sup> ACCIARRI | <b>00</b> C | L3   | E <sup>ee</sup> <sub>cm</sub> = 88–94 GeV    |
| $91.1885 \pm 0.0031$     | 4.57M | <sup>4</sup> BARATE   | <b>00</b> C | ALEP | $E_{\rm cm}^{\it ee} = 88 - 94 \; {\rm GeV}$ |

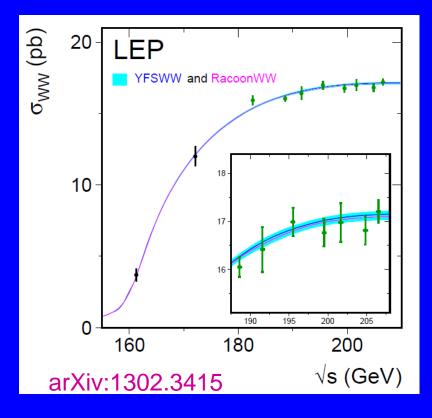

 $\Delta M/M = 2.3 \times 10^{-5}$ 

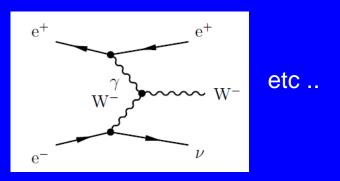

0.4 fb <sup>-1</sup>

m<sub>W</sub> is currently a factor of 8 less precise than m<sub>Z</sub>

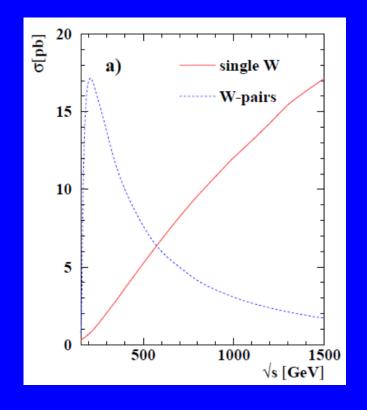

## Hadron Collider mw Measurements

- Tevatron results on partial data-sets
- CDF (e,μ). D0 (e-only)
- Final Tevatron analyses will be challenging
- No results yet from LHC
  - Remember pp (not p-pbar)
  - Low pile-up datasets limited
- It remains to be proven that the LHC in pp mode can supersede the Tevatron.
  - Especially with the focus on HE and HL.




## W Production in e+e-



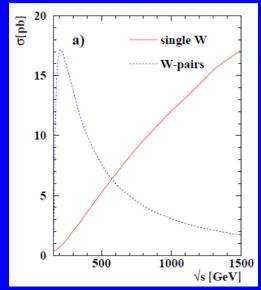







 $e+e-\rightarrow W e v$ 

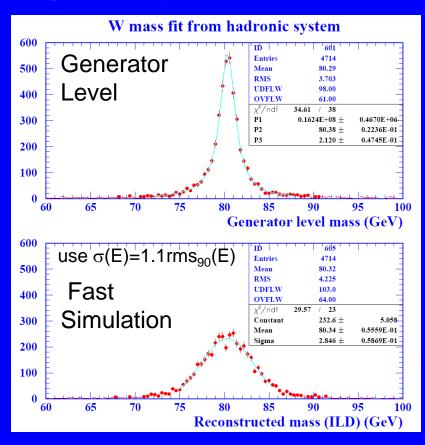



## W Mass Measurement Strategies

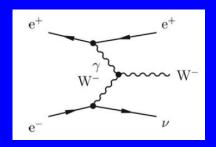
- W+W-
  - 1. Threshold Scan ( $\sigma \sim \beta/s$ )
    - Can use all WW decay modes
  - 2. Kinematic Reconstruction
    - Apply kinematic constraints
- W e ν
  - 3. Directly measure the hadronic mass in W → q q' decays.
    - e usually not detectable, so W → 1 v has 3 undetected particles and is not well suited to W mass measurement

Methods 1 and 2 were used at LEP2. Both require good knowledge of the absolute beam energy.

Method 3 is novel (and challenging), very complementary systematics to 1 and 2 if the experimental challenges can be met.

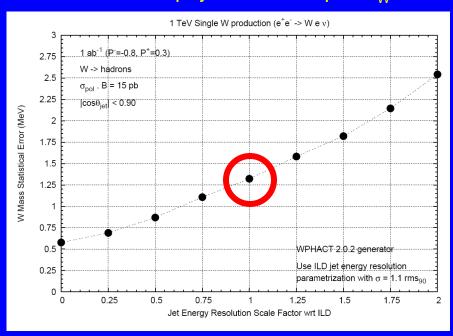






## Can one dream of measuring m<sub>w</sub> to 1 MeV?

(and not get locked up ;-))

Single W study at  $\sqrt{s} = 1\text{TeV}$  (e+e-)

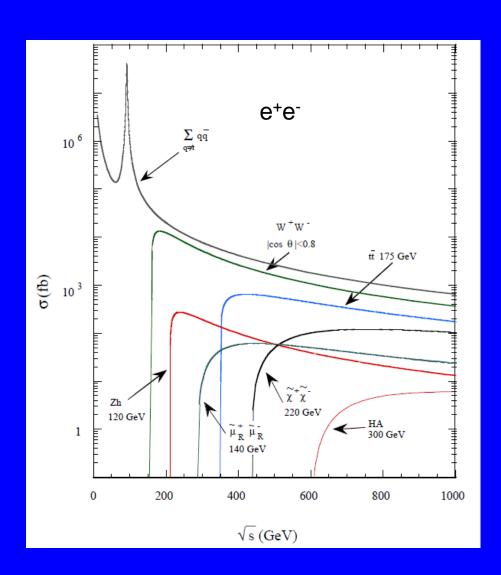


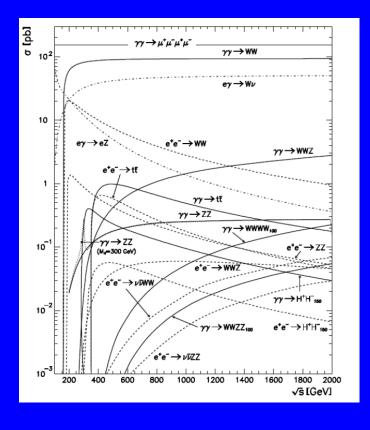

=> Further E<sub>jet</sub> resolution improvement very desirable



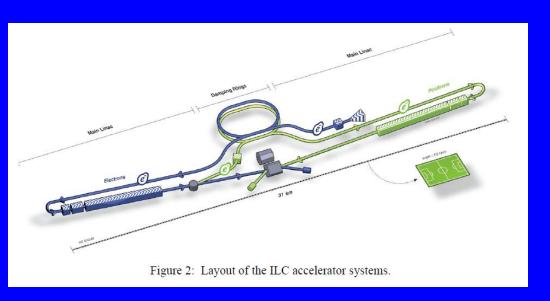
W → q q (jets are not so energetic)

Is this useful for physics? Example m<sub>w</sub>.





Potentially very useful! (Especially, if the really challenging requirements on jet energy scale and calibration can be met!)

## Experimentation at Lepton Colliders


- Facilities under discussion (some more or less seriously)
- ILC  $e^+e^-: 91-1000 \text{ GeV}$
- CLIC  $e^+e^-: 250 3000 \text{ GeV}$
- e<sup>+</sup>e<sup>-</sup> ring colliders
- muon collider
- e<sup>+</sup>e<sup>-</sup> (or e<sup>-</sup>e<sup>-</sup> colliders) operated in either eγ or γγ modes (or e<sup>-</sup>e<sup>-</sup>)

## e<sup>+</sup>e<sup>-</sup> Cross-Sections (unpolarized)





#### ILC



| √s (GeV) | L (fb-1) | Physics  |
|----------|----------|----------|
| 91       | 100      | Z        |
| 161      | 160      | WW       |
| 250      | 250      | Zh       |
| 350      | 350      | t tbar   |
| 500      | 1000     | tth, Zhh |
| 1000     | 2000     | vvh, VBS |

Can polarize both the electron and positron beam. Electron: 80% .... 90%? Positron 20, 30 ... 60%.

My take on a possible runplan factoring in L capabilities at each √s

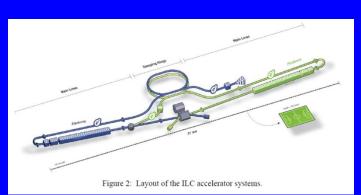
In contrast to circular machines this is not supposed to be in exchange for less luminosity ....

#### Why have longitudinally polarized beams?

#### Advantages

- Measure polarized cross-sections and asymmetries to better understand new and old physics
- Improve statistical errors by preferentially selecting preferred beam helicities (best with high |P|)
- Reduce backgrounds in new physics searches

The expected event number,  $\mu$ , in a particular channel, j, with a particular configuration of signed beam polarizations,  $(P_{\rm e^-}, P_{\rm e^+})$ , exposed to an integrated luminosity  $\mathcal L$  is


$$\mu = \sigma(P_{\mathrm{e}^{-}}, P_{\mathrm{e}^{+}}) \mathcal{L}$$

where

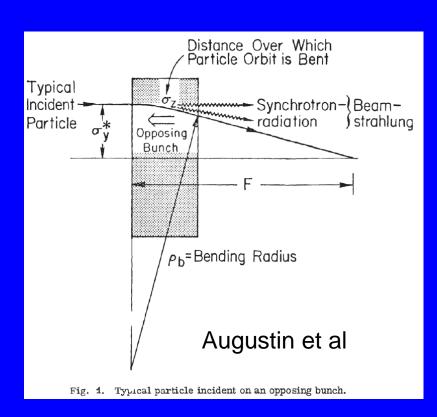
$$\sigma(P_{e^{-}}, P_{e^{+}}) = \frac{1}{4} \{ (1 - P_{e^{-}})(1 + P_{e^{+}})\sigma_{LR} + (1 + P_{e^{-}})(1 - P_{e^{+}})\sigma_{RL} + (1 - P_{e^{-}})(1 - P_{e^{+}})\sigma_{LL} + (1 + P_{e^{-}})(1 + P_{e^{+}})\sigma_{RR} \}$$

and  $\sigma_k$  (k= LR, RL, LL and RR) are the fully polarized cross-sections.

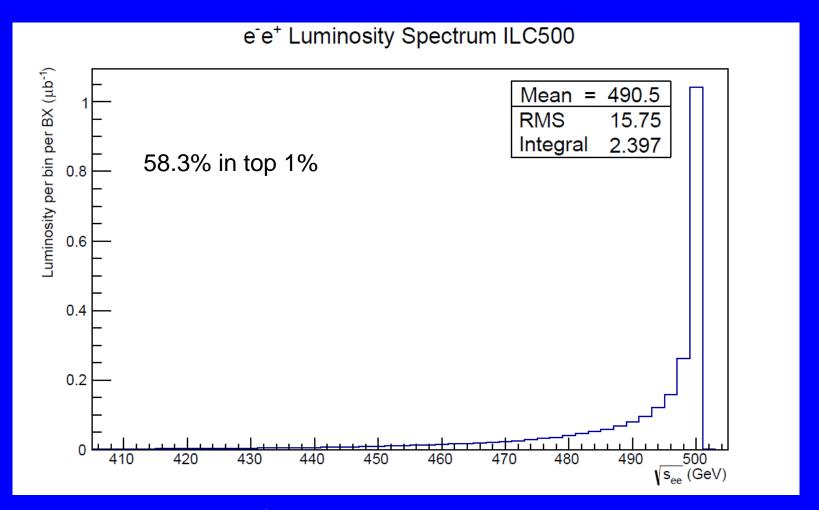
#### ILC Accelerator Parameters



Parameters of interest for precision measurements:

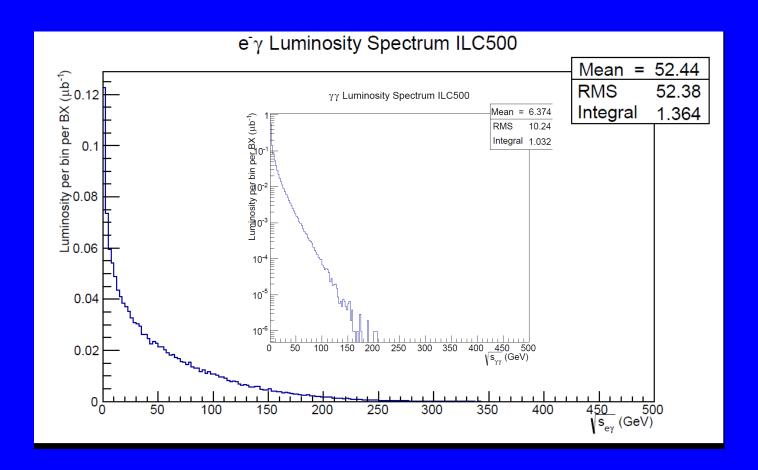

Beam energy spread,
Bunch separation,
Bunch length,
e⁻ Polarization / e⁺ Polarization,
dL/d√s,
Average energy loss,
Pair backgrounds,
Beamstrahlung characteristics,

and of course luminosity.


| uoi i ui                                                          | L                    |                                                    |         |        | <i>)</i>  |                                         |          |          |             |         |          |
|-------------------------------------------------------------------|----------------------|----------------------------------------------------|---------|--------|-----------|-----------------------------------------|----------|----------|-------------|---------|----------|
| Т                                                                 |                      |                                                    |         |        |           |                                         |          |          | L Upgrade   | E_T     | Jpgrade  |
| Centre-of-mass energy                                             | Ecm                  | GeV                                                | 200     | 230    | 250       | 350                                     | 500      |          | 500         | 100     |          |
|                                                                   |                      |                                                    |         |        |           |                                         |          |          |             | A       |          |
| Beam energy                                                       | Ebeam                | GeV                                                | 100     | 115    | 125       | 175                                     | 250      |          | 500         | 50      |          |
| Lorentz factor                                                    |                      |                                                    | ******* | ****** | ********* | *************************************** | *******  |          | *********** | 9,78E+0 | 9,78E+05 |
|                                                                   |                      |                                                    |         |        |           |                                         | <u> </u> |          |             |         |          |
| Collision rate                                                    | Irep                 | Hz                                                 | 5       | 5      | 5         |                                         |          |          | 5           |         | 4 4      |
| Electron linac rate                                               | finec                | Hz                                                 | 10      | 10     | 10        | 5                                       |          |          | 5           |         | 4 4      |
| Number of bunches                                                 | n <sub>b</sub>       |                                                    | 1312    | 1312   | 1312      | 1312                                    |          |          | 2625        | 245     |          |
| Electron bunch population                                         | N.                   | ×10 <sup>10</sup>                                  | 2,0     | 2,0    | 2,0       | 2,0                                     |          | _        | 2,0         | 1,7     |          |
| Positron bunch population                                         | N <sub>+</sub>       | ×10                                                | 2,0     | 2,0    | 2,0       | 2,0                                     | 2,0      | _        | 2,0         | 1,7     | 1,74     |
| Punch consession                                                  |                      | ns                                                 | 554     | 554    | 554       | 554                                     | 554      | _        | 366         | 36      | 5 366    |
| Bunch separation Bunch separation ×f <sub>nr</sub>                | t <sub>b</sub>       |                                                    | 720     | 720    | 720       | 720                                     | 720      |          | 476         | 47      |          |
| Pulse current                                                     |                      | mA                                                 | 5.8     | 5.8    | 5.8       | 5.8                                     | 5,79     | -        | 8,75        | 7.      |          |
| ruse curem                                                        | Ibam                 |                                                    | 3,0     | 3,8    | 3,0       | 3,0                                     | 3,19     | $\vdash$ | 0,73        | /,      | 0,1      |
| RMS bunch length                                                  | z                    | mm                                                 | 0,3     | 0,3    | 0,3       | 0,3                                     | 0,3      | $\vdash$ | 0,3         | 0,25    | 0,225    |
| Electron RMS energy spread                                        | p/p                  | %                                                  | 0.206   | 0.194  | 0.190     | 0.158                                   | 0.124    | $\vdash$ | 0.124       | 0.08    | 0.085    |
| Positron RMS energy spread                                        | p/p                  | %                                                  | 0.190   | 0.165  | 0.152     | 0.100                                   | 0,070    | $\vdash$ | 0.070       | 0.04    |          |
| Electron polarisation                                             | Р.                   | %                                                  | 80      | 80     | 80        | 80                                      |          |          | 80          | 8       |          |
| Positron polarisation                                             | $\mathbf{p}_{+}$     | %                                                  | 31      | 31     | 30        | 30                                      | 30       |          | 30          | 2       | 20       |
|                                                                   |                      |                                                    |         |        |           |                                         |          | Г        |             |         |          |
| Horizontal emittance                                              | x                    | m                                                  | 10      | 10     | 10        | 10                                      | 10       | Г        | 10          | 1       | 10       |
| Vertical emittance                                                | у                    | nm                                                 | 35      | 35     | 35        | 35                                      | 35       |          | 35          | 3       | 30       |
|                                                                   |                      |                                                    |         |        |           |                                         |          |          |             |         |          |
| IP horizontal beta function                                       | x                    | nm                                                 | 16,0    | 14,0   | 13,0      | 16,0                                    | 11,0     |          | 11,0        | 22,     |          |
| IP vertical beta function (no TF)                                 | у*                   | mm                                                 | 0,34    | 0,38   | 0,41      | 0,34                                    | 0,48     |          | 0,48        | 0,2     | 0,23     |
|                                                                   |                      |                                                    |         |        |           |                                         |          |          |             |         |          |
| IP RMS horizontal beam size                                       | x.                   | nm                                                 | 904     | 789    | 729       | 684                                     | 474      | _        | 474         | 48      |          |
| IP RMS veritcal beam size (no TF)                                 | y T                  | nm                                                 | 7,8     | 7,7    | 7,7       | 5,9                                     | 5,9      | _        | 5,9         | 2,      | 8 2,7    |
| Universal distantian exercises                                    | D.                   |                                                    | 0.2     | 0.2    | 0.3       | 0.2                                     | 0.3      | _        | 0.3         | 0.      | 1 0.2    |
| Horizontal distruption parameter<br>Vertical disruption parameter | D,                   |                                                    | 24.3    | 24.5   | 24.5      | 24.3                                    | -,-      | _        | 24.6        | 18.     | -,-      |
| Horizontal enhancement factor                                     | H <sub>De</sub>      |                                                    | 1.0     | 1.1    | 1.1       | 1.0                                     |          | _        | 1.1         | 10,     |          |
| Vertical enhancement factor                                       | H <sub>Dy</sub>      |                                                    | 4,5     |        | 5.4       | 4.5                                     | -,-      | _        | 6.1         | - 3.    |          |
| Total enhancement factor                                          | H <sub>D</sub>       |                                                    | 1.7     | 1.8    | 1.8       | 1.7                                     |          | -        | 2.0         | - 1.    |          |
| Geometric luminosity                                              | L                    | ×10 <sup>14</sup> cm <sup>-2</sup> s <sup>-1</sup> |         | -,-    | 0.37      | 0.52                                    |          | -        | 1.50        | 1.7     | -,-      |
| Ceometric numbersity                                              | geom                 |                                                    | 0,50    | 0,54   | 0,57      | 0,52                                    | 0,73     | _        | 1,50        | - 1,7   | 2,04     |
| Luminosity                                                        | L                    | ×10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 0.50    | 0.61   | 0.68      | 0.88                                    | 1.47     | _        | 2.94        | 2,7     | 1 4.32   |
| Average beamstrahlung parameter                                   |                      |                                                    | 0,013   | 0,017  | 0,020     | 0,030                                   | -,       |          | 0,062       | 0,12    |          |
| Maximum beamstrahlung paramete                                    |                      |                                                    | 0,031   | 0,041  | 0,048     | 0,072                                   | 0,146    |          | 0,146       | 0,30    | 5 0,483  |
| Average number of photons / partic                                |                      |                                                    | 0,95    | 1,08   | 1,16      | 1,23                                    | 1,72     |          | 1,72        | 1,4     | 3 1,97   |
| Average energy loss                                               | Ens                  | %                                                  | 0,51    | 0,75   | 0,93      | 1,42                                    | 3,65     |          | 3,65        | 5,3     | 3 10,20  |
|                                                                   |                      |                                                    |         |        |           |                                         |          |          |             |         |          |
| Luminosity                                                        | L                    | $\times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$      | 0,498   | 0,607  | 0,681     | 0,878                                   |          |          | 3,00        | 3,2     | 4,31     |
| Coherent waist shift                                              | $W_y$                | m                                                  | 250     |        | 250       | 250                                     |          |          | 250         | 19      |          |
| Luminosity (inc. waist shift)                                     | L .                  | ×10 <sup>34</sup> cm <sup>-2</sup> 5 <sup>-1</sup> | -,      | -,     | 0,75      | 1,0                                     |          |          | 3,6         | 3,      |          |
| Fraction of luminosity in top 1%                                  | L <sub>0.01</sub> /L |                                                    | 91,3%   | 88,6%  | 87,1%     | 77,4%                                   |          |          | 58,3%       | 59,29   |          |
| Average energy loss                                               | Eas                  | 104                                                | 0,65%   | 0,83%  | 0,97%     | 1,9%                                    | -        | _        | 4,5%        | 5,6%    |          |
| Number of pairs per bunch crossing                                | Npairs               | ×10 <sup>3</sup>                                   | 44,7    | 55,6   | 62,4      | 93,6                                    | 139,0    |          | 139,0       | 200,    | 5 382,6  |

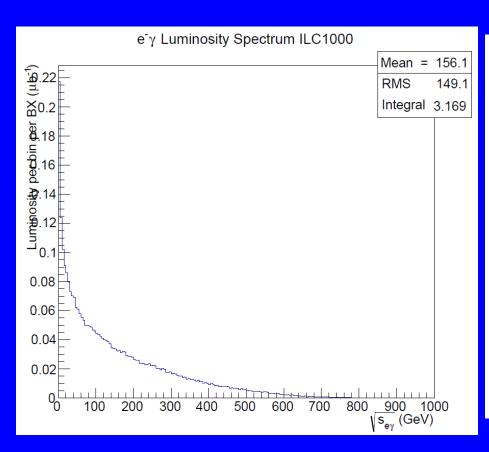
## Beamstrahlung

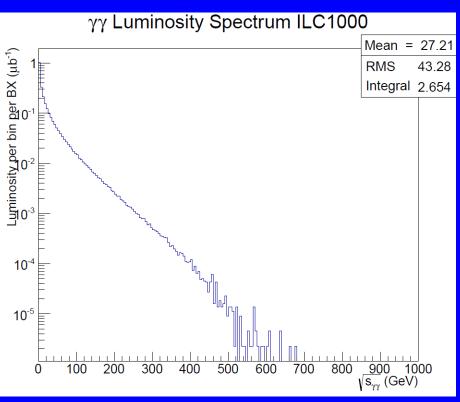
- Very strong magnetic field experienced by individual particles of beam during collision.
- Leads to quantum emission of hard photons of order 0.1 E<sub>beam</sub>.
- See Yokoya and Chen.
- Distorts e<sup>+</sup>e<sup>-</sup> lumi spectrum
- And in addition to e<sup>+</sup>e<sup>-</sup> collisions, we also have collisions (with real γ's).
- e<sup>-</sup> γ, γ e<sup>+</sup>, γγ




## Luminosity Spectrum




Note plot starts at 405 GeV


## Luminosity Spectrum

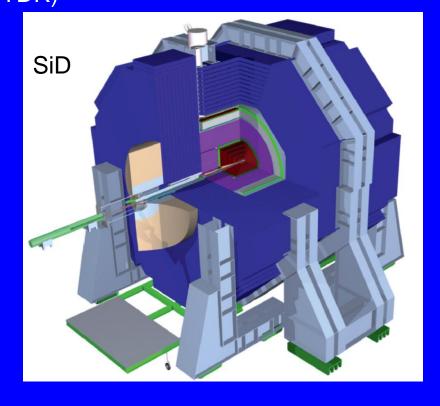


 $\langle n(\gamma\gamma \rightarrow had) \rangle$  with W > 2 GeV = 0.5

## Luminosity Spectrum






 $\langle n(\gamma\gamma \rightarrow had) \rangle$  with W > 2 GeV = 2.0

## **ILC Detector Concepts**

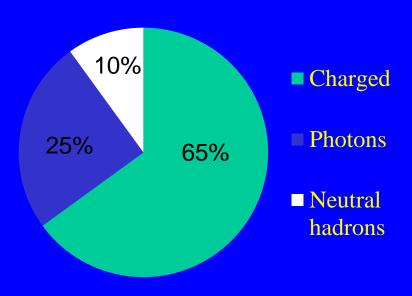
Large international effort. See Letters of Intent from 2009. Currently Detailed Baseline Documents in finalization stage (part of ILC TDR)







Detailed designs with engineering realism. Full simulations with backgrounds. Advanced reconstruction algorithms. Performance in many respects (not all) much better than the LHC experiments. Central theme: particle-flow based jet reconstruction. New people welcome!

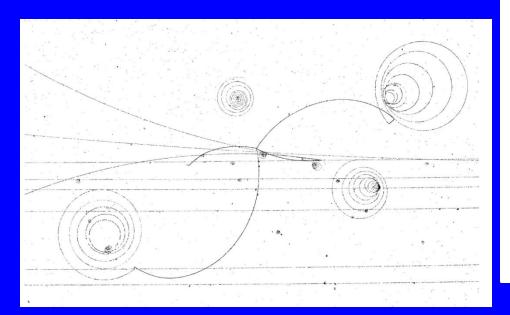

## Particle-Flow in a Nut-Shell

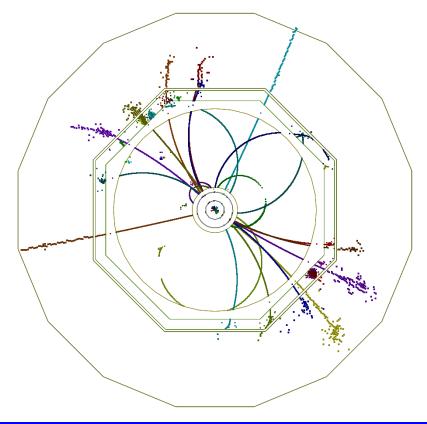
E(jet) = E(charged) + E(photons) + E(neutral hadrons)

#### Basics

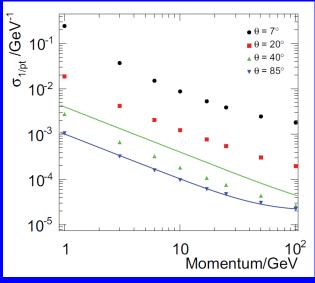
- Outsource 65% of the event-energy measurement responsibility from the calorimeter to the tracker
  - Emphasize particle separability and tracking
  - Leading to better jet energy precision
- Reduce importance of hadronic leakage
  - Now only 10% instead of 75% of the average jet energy is susceptible
  - Detector designs suited to wide energy range
- Maximize event information
  - Aim for full reconstruction of each particle including V0s, kinks, π<sup>0</sup> etc.
  - Facilitates software compensation and application of multi-variate techniques

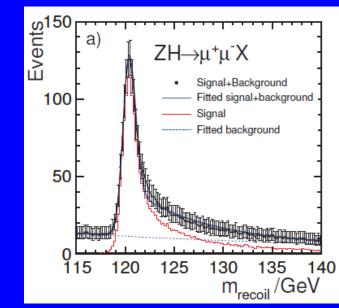
#### **Particle AVERAGEs**

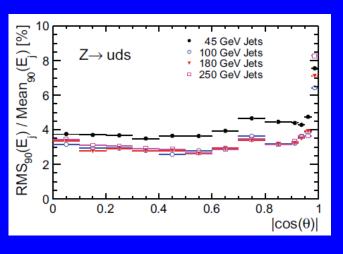




This used to be controversial – but already was well established at LEP. Now is widely applied at LHC in particular in CMS.

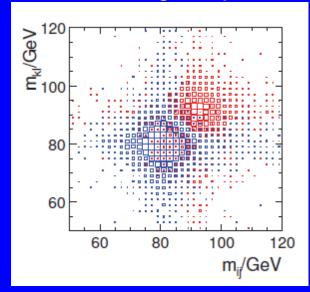
## **Bubble Chamber**


The vision is to do the best possible physics at the linear collider, by reconstructing as far as possible every single piece of each event.


Very much in the spirit of bubble chamber reconstruction – but with full efficiency for photons and neutral hadrons, and in a high multiplicity environment at high luminosity.



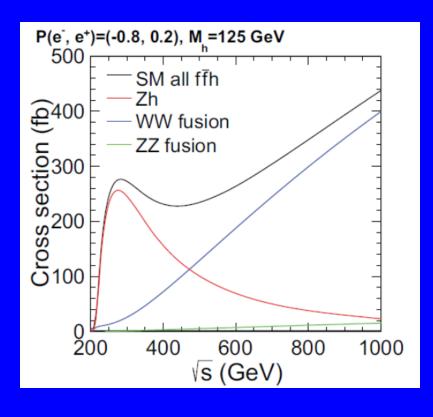


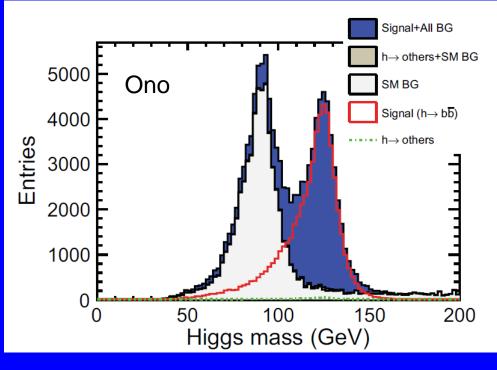


## **Detector Performance**





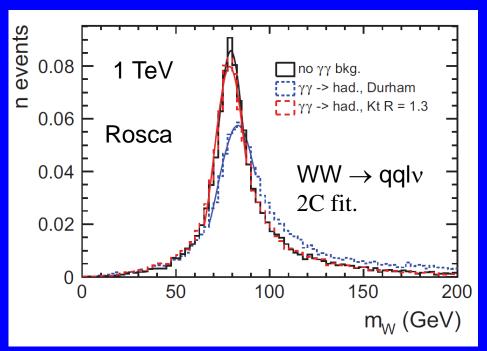


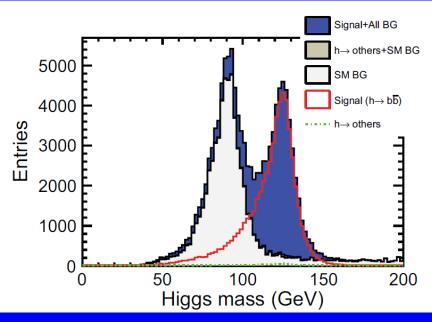

#### WW scattering to 4 jets




vvWW / vvZZ

## ILD Full Simulation with Background


1 TeV.  $e^+e^- \rightarrow v v h (125) \rightarrow v v b b$ 






## ILD Full Simulation with Background

Inclusion of backgrounds associated with  $\gamma\gamma$  interactions – although typically with low  $\gamma\gamma$  mass – have necessitated changes to more HC-like jet finders – particularly for higher  $\sqrt{s}$ 





You basically see in these two plots: W, Z, h reconstructed hadronically.

## mw Measurement Prospects

- A crucial systematic common to the threshold measurement and kinematic reconstruction is the absolute beam energy knowledge.
- This is expected to worsen with  $\sqrt{s}$ . (statistics & BS).
- Direct E<sub>beam</sub> measurements target 10<sup>-4</sup> precision.
- One way to control it discussed by me in 1996 ... is to use radiative return to the Z events:  $f f(\gamma)$  events.
  - Study by Kinze & Moenig, 2005
    - Confirms that the uncertainty worsens significantly with  $\sqrt{s}$
  - Measured by OPAL, L3, DELPHI
  - This looks solid but statistics limited.
    - Needs control of detector aspect ratio (in polar angle measurement).

## In-situ Beam-Energy Calibration

#### Hinze & Moenig

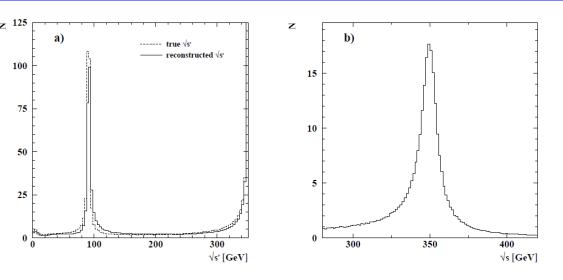



Figure 2: True and reconstructed  $\sqrt{s'}$  (a) and reconstructed  $\sqrt{s}$  for  $e^+e^- \to Z\gamma \to \mu^+\mu^-\gamma$  at  $\sqrt{s} = 350 \,\text{GeV}$ 

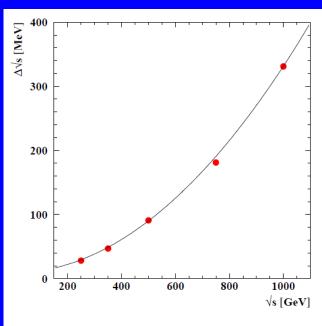
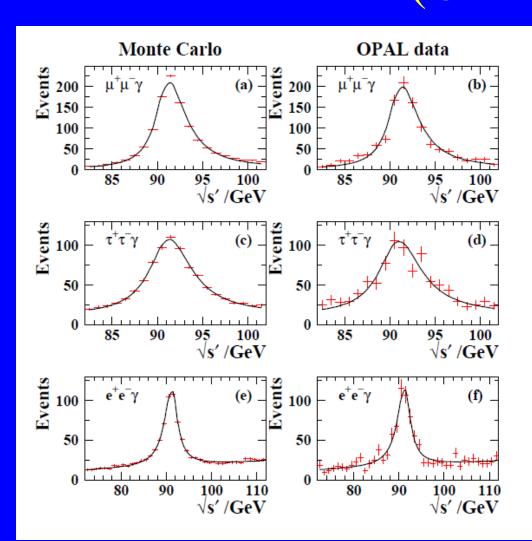
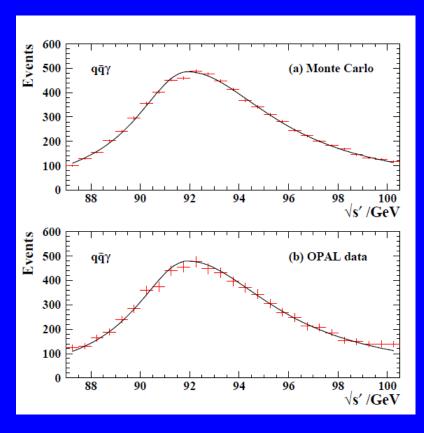



Figure 3: Energy dependence of  $\Delta \sqrt{s}$  for  $\mathcal{L} = 100 \text{ fb}^{-1}$ .

$$\sqrt{s} = m_{\rm Z} \sqrt{\frac{\sin \theta_1 + \sin \theta_2 - \sin(\theta_1 + \theta_2)}{\sin \theta_1 + \sin \theta_2 + \sin(\theta_1 + \theta_2)}}$$


$$\Delta\sqrt{s} = (8.8 + 0.0026\sqrt{s}/\text{GeV} + 0.0032s/\text{GeV}^2) \text{ MeV}.$$

Suspect +ve linear term is in fact -ve.


Studies (by T. Barklow) including p measurement indicate factors of 2-4 better precision

(Note. At 161 GeV my error estimate (ee, $\mu\mu$ ) on  $\sqrt{s}$  is 5 MeV)

## Z γ Beam Energy Measurement (OPAL)



PLB 604 (2004) 31-47



## m<sub>W</sub> Measurement Prospects Near Threshold

#### PRECISION MEASUREMENT OF THE W MASS WITH A POLARISED THRESHOLD SCAN AT A LINEAR COLLIDER

Graham W. Wilson, LC-PHSM-2001-009, 21st February 2001
Department of Physics, Schuster Laboratory, The University, Manchester M13 9PL, UK

Threshold scans potentially offer the highest precision in the determination of the masses and widths of known and as yet undiscovered particles at linear colliders. Concentrating on the definite example of the WW threshold for determining the W mass  $(M_{\rm W})$ , it is shown that the currently envisaged high luminosities and longitudinal polarisation for electrons and positrons allow  $M_{\rm W}$  to be determined with an error of 6 MeV with an integrated luminosity of 100 fb<sup>-1</sup> (One 10<sup>7</sup> s year with TESLA). The method using polarised beams is statistically powerful and experimentally robust; the efficiencies, backgrounds and luminosity normalisation may if needed be determined from the data. The uncertainties on the beam energy, the beamstrahlung sprectrum and the polarisation measurement are potentially large; required precisions are evaluated and methods to achieve them discussed.

| Channel $(j)$     | Efficiency (%) | Unpolarised $\sigma_{bkgd}$ (fb) | WW fraction (%) |
|-------------------|----------------|----------------------------------|-----------------|
| $\ell\ell$        | 75             | 20                               | 10.5            |
| $\ell \mathrm{h}$ | 75             | 80                               | 44.0            |
| h h               | 67             | 400                              | 45.5            |

Measure at 6 values of √s, in 3 channels, and with up to 7 different helicity combinations.

Estimate error of 6 MeV (includes Ebeam error from  $Z \gamma$ ) per 100 fb<sup>-1</sup> polarized scan (assumed 60% e+ polarization)

| 1.05<br>Four ratio<br>1.04<br>1.03 |                                 |
|------------------------------------|---------------------------------|
| ₾ 1.03                             | F 3                             |
| 1.02                               | 80.31 GeV                       |
| 1.01                               | 80.36 GeV                       |
| 1                                  | 80.39 GeV                       |
| 0.99                               |                                 |
| 0.98                               | 80.47 GeV                       |
| 0.97                               | <u> </u>                        |
| 0.96                               |                                 |
| 0.95<br>1                          | 60 162 164 166 168 170 √s (GeV) |

| $\sqrt{s}$ (j) | Luminosity weight |
|----------------|-------------------|
| 160.4          | 0.2               |
| 161.0          | 1.0               |
| 161.2          | 1.0               |
| 161.4          | 1.0               |
| 162.0          | 0.2               |
| 170.0          | 1.2               |

## mw Measurement Near Threshold

- Requires dedicated running at an energy which is mostly only good for  $m_W$  measurement.
- The envisaged Higgs and top producing next lepton collider may not spend much time if any near W threshold – especially if there are other ways to access the m<sub>w</sub> with competitive precision.
- Could still be a very useful thing to do for a less ambitious regional machine (say a Z and WW factory).
- (Note that resonant depolarization measurement of beam energy (used for m<sub>Z</sub>) was not possible above 60 GeV)

## m<sub>w</sub> Prospects from Kinematic Reconstruction

- WW statistics are plentiful in envisaged run plan.
- Especially so wrt LEP2 using polarized beams.
- Detector performance much better than LEP detectors (helps also threshold cross-section).
- Can envisage samples with 1000 times more events than the 4 LEP experiments combined.
  - Statistical reasons to countenance error on the 1 MeV scale
  - But straightforward application of LEP2 techniques is unlikely to be the way to achieve this goal.

## m<sub>W</sub> from Kinematic Reconstruction

- qqlv Channel
- Apply (E, **p**) conservation constraint.
- 3 unknowns for v momentum.
- 1C fit.

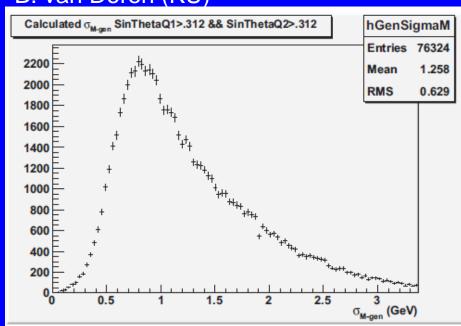
Bottom-line.

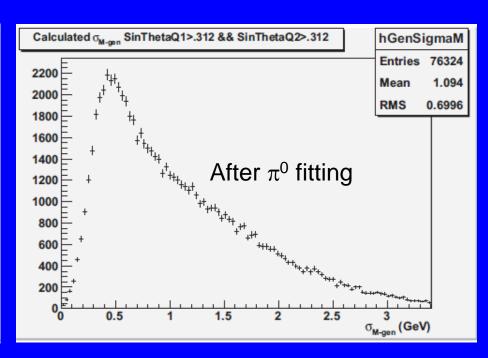
Need beam energy and beamstrahlung under control.

Latter is thought doable.

- qqqq
- Apply (E, p) conservation constraint
- 4C fit.
- Final LEP2 results suffered from "color reconnection" systematic.
- Also lvlv channel.
- Use lepton endpoints and pseudo-mass.

## Beam Energy Calibration


- Ideas of using a mini-scan at the Z to calibrate say a spectrometer which can be extrapolated to higher energy.
- Even the calorimeter potentially calibrated at the Z using Bhabhas can be used in a similar fashion ?? (although calorimeter non-linearities can be unfavorable...)


## m<sub>w</sub> from Hadronic Mass in Single W

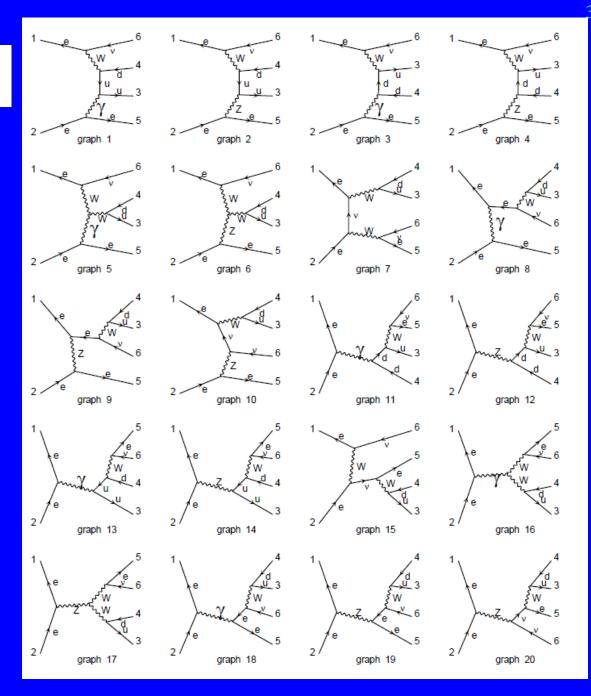
- Cross-section including eγ induced reactions with -80% (e-), +20% (e+) is 40 pb at 1 TeV.
- Per event mass resolution is the convolution of the intrinsic width, (2.08 GeV), and detector resolution.
- The latter varies significantly from event-to-event.
  - Depends a lot on the amount of neutral hadron energy.

## **Event-Specific Hadronic Mass Resolution**

#### B. van Doren (KU)






Assumes individual particles are reconstructed, resolved and measured with perfect efficiency, intrinsic detector resolutions and perfect mass assignments.

(Also no confusion: valid for low jet-energy and jet multiplicity environment)

Many experimental systematics need to be included: including effects like multiple interactions  $(\gamma\gamma \rightarrow \text{hadrons})$ 

 $e^+e^- \rightarrow u\bar{d}e^-\bar{\nu}_e$ 

- CC20
- 4 non-resonant
- 3 are doublyresonant (WW)
- Graphs 5, 8, 15 particularly important.
- Graphs 11-14 have non-resonant ud

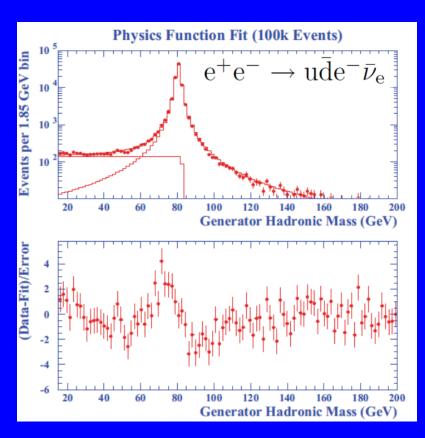


## Convolution Fit

Perform event-by-event likelihood fit for proper weighting of events

Convolution of physics and resolution functions

$$\mathcal{L}_i = R_i(m' \mid m, \sigma_i) \otimes P(m \mid m_W, \Gamma_W, f_B)$$


 Physics function is distribution of hadronic mass.
 Uses combination of signal and background functions

$$P(m \mid m_W, \Gamma_W, f_B) = (1 - f_B)P_S + f_BP_B$$

Can use the estimated hadronic mass resolution for each event (can be vastly different)

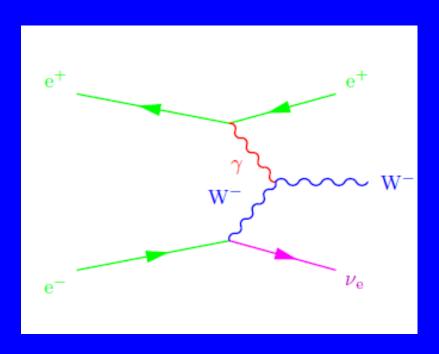
## **Physics Function**

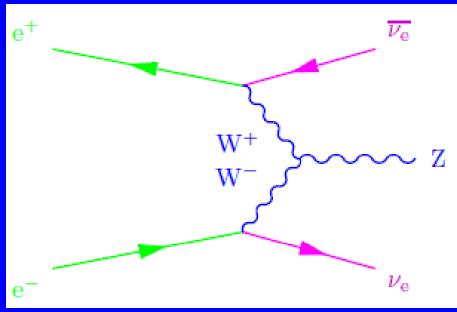
- Ideally, parametrize the physics function (d $\sigma$ /dm\_had) analytically (M<sub>W</sub>,  $\Gamma$ <sub>W</sub> as parameters).
- Example: ECM = 500 GeV
- Plot for non doubly-resonant helicity configuration (LL) for illustration.
- Physics function needs the resonance, phase-space, nonresonant background, interference.
- With this in hand it would be fairly trivial to include detector resolution in a convolution fit.



What  $M_W$ ? What  $\Gamma_W$ ? s-dependent width? Phase-space? Theoretical input welcome! May be a problem which naturally needs MC though ...

#### **Estimated Statistical Uncertainties**


- 38 pb Single W → hadron cross-section
- Assumes 1000 fb<sup>-1</sup> at 1 TeV (80,20 polarization).
- Estimate 20 M accepted W-like events
  - ILD00 jet resolution model and simple Gaussian fit (see slide 7).
    - $\Delta M_W$  (stat) = 1.0 MeV
  - With toyMC assumptions and simple fit
    - $\Delta M_w$  (stat) = 0.68 MeV
  - With toyMC assumptions and convolution fit
    - $\Delta M_W$  (stat) = 0.52 MeV
  - With toyMC assumptions and convolution fit and  $\pi 0$  fitting
    - $\Delta M_W$  (stat) = 0.46 MeV
  - With perfect resolution (intrinsic width limit)
    - $\Delta M_w$  (stat) = 0.34 MeV


### Similar Exercise Done with vvh

with B. van Doren

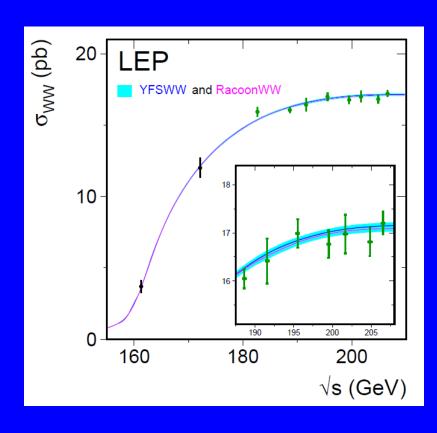
- Require h decays hadronically.
- Require no secondary neutrinos (from b, c, W, Z).
  - Likely a lepton veto in reality
- h (126 GeV) intrinsic width is very small. (4 MeV).
- For 1 TeV find following errors on m<sub>H</sub> from convolution fits ignoring the (tiny) width, background etc.
  - 6.6 MeV : standard
  - 4.8 MeV: with  $\pi^0$  fitting
  - 8.7 MeV: allow neutral hadron energy scale to float.

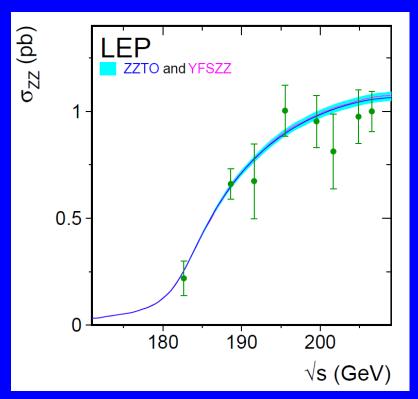
### Z Calibration Methods





 $(\Delta M/M)_Z = 2.3 \times 10^{-5}$ 

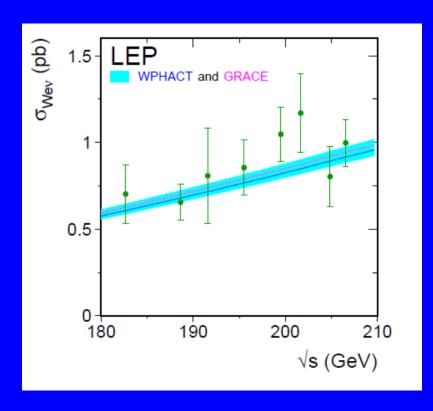

Zvv.

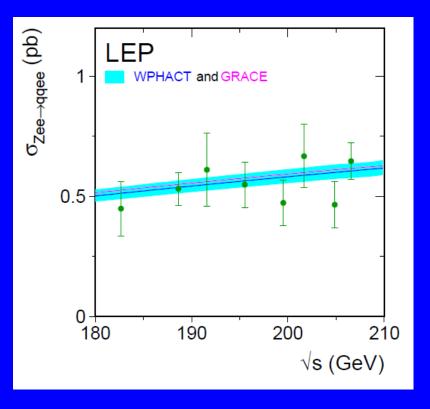

Effective cross-section for final states with Z

→ hadrons are around 1.3 pb at 1 TeV.

Also Zee. Cross-sections huge (20 pb) when including  $e\gamma \rightarrow eZ$ . Need to check acceptance.

### WW and ZZ



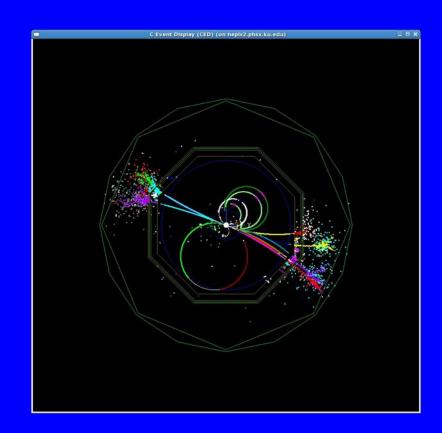




WW ZZ

At ILC can potentially use ZZ to control beam energy systematics in WW production using PDG Z mass (LEP). ZZ cross-sections lower by factor of 25 (15 and up to 2 for polarization...)

# 4f processes with resonant W, Z






Wev Zee

Experimentally feasible to get similar in-situ Z statistics to W.

## Jet Energy Scale Particle-by-Particle

- One can also consider calibrating absolutely given the m<sub>Z</sub> uncertainty.
- Need
  - Tracker p-scale
  - EM Cal E-scale
  - Calorimeter neutral-hadron energy scale
- Can use precisely known particle scales:  $\Lambda^0$ ,  $\pi^0$ ,  $\phi$ ,  $\Sigma$ .
- Also fragmentation errors
   (K<sub>I</sub>, n)



### Conclusions

- Many ways to measure m<sub>W</sub> at a lepton collider like ILC with modern detectors.
- Statistics is not the issue.
  - Worth doing this well and with different methods.
- Plausible approaches to exploit 1 MeV statistical precision likely rely on the known m<sub>Z</sub>
  - Setting an error scale of 2 MeV
- Can also potentially measure the X(125) mass to the 10 MeV level at ILC with similar technique.
- The next question will be can we do better on measuring m<sub>Z</sub>?
- Bottom-line:
- It is reasonable to expect a 5 MeV error on m<sub>w</sub> from ILC.
- It is not unreasonable to target a 2.5 MeV error needs work!

### **ILC** References

- <a href="http://www.linearcollider.org/physics-detectors/WWS">http://www.linearcollider.org/physics-detectors/WWS</a>
- ILC Reference Design Report 2007 has links to
  - i) Physics at the ILC (Vol II)
  - ii) Detectors (Vol IV).
- Detector Letters of Intent 2009. (ILD and SiD).
- Currently, ILC TDR report is being finalized with Documents (DBDs) for the detectors.
- Visit/subscribe to <a href="http://newsline.linearcollider.org/">http://newsline.linearcollider.org/</a> to find out more and stay informed.

# Backup

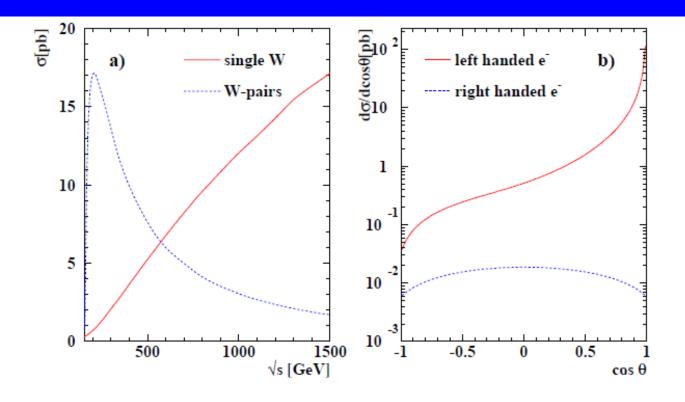
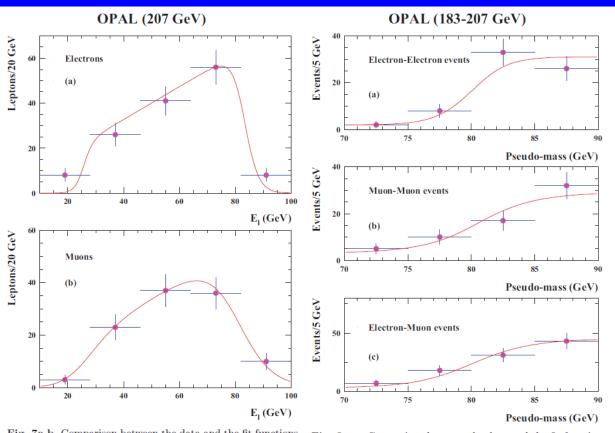
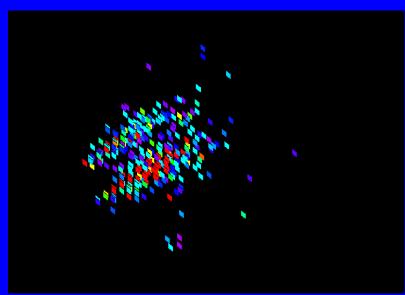



Figure 5.1.3: a): Total cross section for single W [1] and W pair production [2] as a function of the centre of mass energy. b): Differential cross section for W-pair production for different beam polarisation.

# W Mass from Di-lepton Events

Eur.Phys.J.C.26 (2003) 321-330

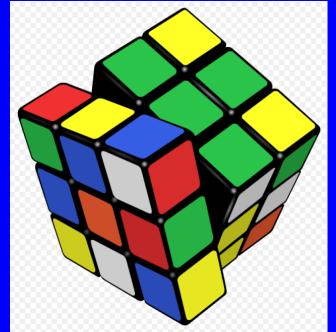
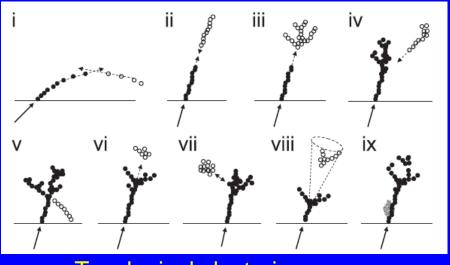


Fig. 7a,b. Comparison between the data and the fit functions for the leptonic energy at a center-of-mass energy of 207 GeV. a electrons. b muons

Fig. 8a—c. Comparison between the data and the fit function for the pseudo-mass at all center-of-mass energies. a electron-electron events. b muon-muon events. c electron-muon events

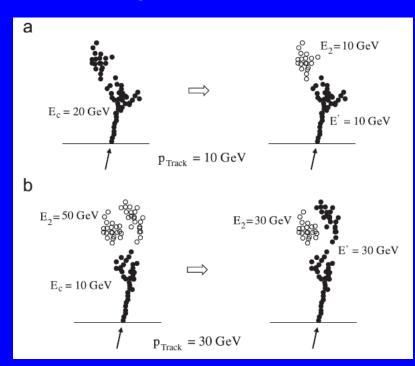
## **Imaging Calorimeters**

- Standard cell-sizes under discussion
- ECAL: 5mm X 5mm X 30 layers
  - 10,000 more channels than OPAL
- HCAL: 10 mm X 10 mm X 50 layers
- Immense amount of information.
- Potentially (E, time) for each volume pixel.






# Particle Flow Algorithms


- Highly non-trivial.
  - Many groups have worked in this area
  - To date, PandoraPFA developed primarily by M. Thomson for ILD and using the Mokka/Marlin framework and now rewritten by J. Marshall has set the performance bar.

Depends at basic level on calorimeter clustering.

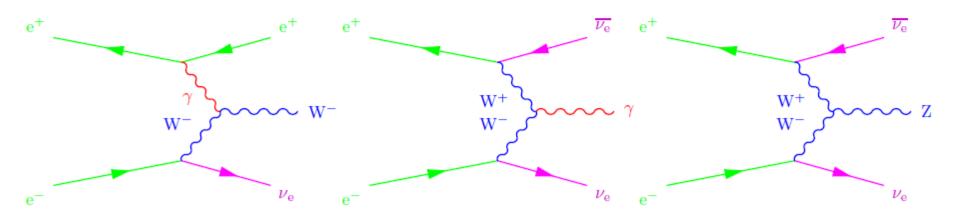


Topological clustering

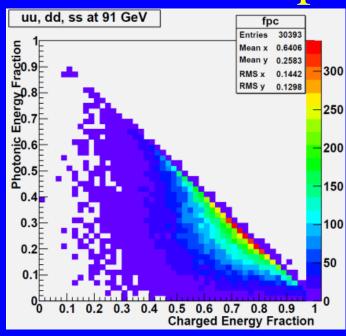
M. Thomson, NIM A611 (2009) 25. Reclustering

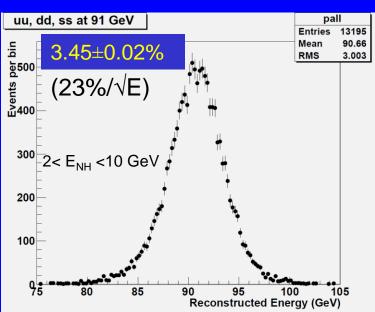


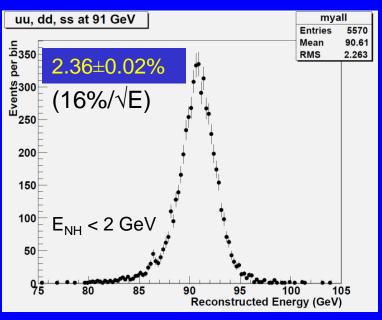
Use track-momentum – clusterenergy consistency to drive repartitioning of energy.

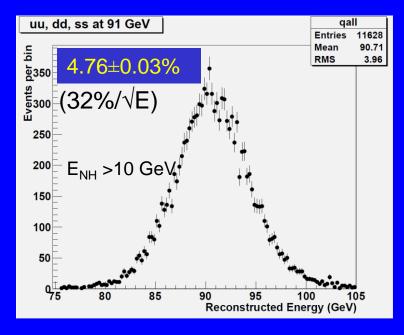


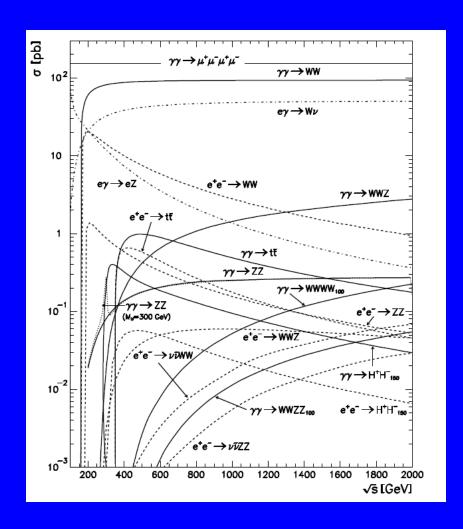

# Beam Polarization Measurement Using Single Bosons with Missing Energy


Graham W. Wilson


University of Kansas


October 23rd 2012





# **Event-Specific Resolution**









