# Investigating In-Situ $\sqrt{s}$ Determination with $\mu\mu(\gamma)$

- ILC physics capabilities will benefit from a well understood centre-of-mass energy
  - Preferably determined from collision events.
- Measure precisely W, top, Higgs masses. (and Z ?)
- Two methods using μ μ (γ) events have been discussed:
  - Method A: Angle-Based Measurement
  - Method P: Momentum-Based Measurement

Graham W. Wilson, Univ of Kansas, ECFA LC2013, Hamburg, May 28<sup>th</sup> 2013.

# Using $Z\gamma \rightarrow \mu\mu\gamma$ for $\sqrt{s}$ determination



Two methods: A) Use angles only, measure  $m_{12} / \sqrt{s}$ . Use known  $m_z$  to reconstruct  $\sqrt{s}$ . P) Use muon momenta. Measure  $E_1 + E_2 + p_{12}$ .

| Tim Barklow study.                          | (assume                | dL/dx <sub>1</sub> dx <sub>2</sub> | known)                         |
|---------------------------------------------|------------------------|------------------------------------|--------------------------------|
| measured var                                | fit var                | $\Delta E_{cm}(GeV)$               | $\frac{\Delta E_{cm}}{E}$ (ppm |
| ECM = 350 GeV 10                            | 00 fb <sup>-1</sup>    |                                    | L <sup>2</sup> cm              |
| $E_{Z\gamma}$ using angles only             | E <sub>cm</sub>        | 0.0425                             | 121                            |
| $E_{Z\gamma}$ using momenta & angles        | $E_{cm}$               | 0.0035                             | 10                             |
| $E_{z_{\gamma}}, M_z$ using momenta & angle | es E <sub>cm</sub> & t | 0.0045                             | 13                             |
| $E_{Z\gamma}$ using momenta & angles        | $E_{cm}$ & t           | 0.0048                             | 14                             |



With detectors designed for 0.14%  $\Delta p_T/p_T$  at 45 GeV, it is feasible to improve by an order of magnitude over the  $\Gamma_Z$  dominated method. May also scale better with  $\sqrt{s}$  ?

# Method A: Angles



Figure 2: True and reconstructed  $\sqrt{s'}$  (a) and reconstructed  $\sqrt{s}$  for  $e^+e^- \rightarrow Z\gamma \rightarrow \mu^+\mu^-\gamma$  at  $\sqrt{s} = 350 \text{ GeV}$ 



Figure 3: Energy dependence of  $\Delta \sqrt{s}$  for  $\mathcal{L} = 100$  fb<sup>-1</sup>.

$$\sqrt{s} = m_{\rm Z} \sqrt{\frac{\sin\theta_1 + \sin\theta_2 - \sin(\theta_1 + \theta_2)}{\sin\theta_1 + \sin\theta_2 + \sin(\theta_1 + \theta_2)}}$$

1. Statistical error per event of order  $\Gamma/M = 2.7\%$ 

2. Error degrades fast with  $\sqrt{s}$ .

(Note. At 161 GeV my error estimate (ee, $\mu\mu$ ) on  $\sqrt{s}$  is 5 MeV: 31 ppm)

### Method P: Muon Momenta



In the specific case, where the photonic system has zero  $p_T$ , the expression is particularly straightforward. It is well approximated by where  $p_T$  is the  $p_T$  of each muon. Assuming excellent resolution on angles, the resolution on  $(\sqrt{s})_P$  is determined by the  $\theta$  dependent  $p_T$  resolution.

Under the assumption of a massless photonic system balancing the measured di-muon, the momentum (and energy) of this photonic system is given simply by the momentum of the di-muon system.

So the center-of-mass energy can be estimated from the sum of the energies of the two muons and the inferred photonic energy.

$$(\sqrt{s})_{P} = E_{1} + E_{2} + |\mathbf{p}_{1} + \mathbf{p}_{2}|$$

$$\sqrt{s_{\rm P}} = p_{\rm T} \left( \frac{1 + \cos \theta_1}{\sin \theta_1} + \frac{1 + \cos \theta_2}{\sin \theta_2} \right)$$

Method can also use non radiative return events with  $m_{12} \gg m_Z$ 

Method A (Angles)

(Absolute scale driven by m<sub>z</sub> – known very well)

Method P (Momenta)

(Absolute scale driven by tracker momentum scale).

Momenta smeared.

Resolution is effectively 10 times better !



## **Momentum Resolution**

#### Use the standard parametrization fitted to single muons from the ILD DBD.

 $\sigma_{1/p_T} = a \oplus b/(p_T \sin \theta)$ 

Where typically

 $a = 2 \times 10^{-5} \,\text{GeV}^{-1}$  and  $b = 1 \times 10^{-3}$ for the full TPC coverage  $(\theta > 37^{\circ})$ 

Fit momentum resolution in the p≥10 GeV range. Superimposed curves are fits for the a,b parameters at 4 polar angles. Maximum deviation from fit

with this simple parametric form is 6%.

Interpolate between polar angles in endcap (use R<sup>2</sup> scaling for the a term).



# **Generator Data-sets**

- Use DBD Whizard 4vector files.
- At ECM=250, 350, 500, 1000 GeV.
- Use 1 stdhep file per energy. (e<sup>-</sup><sub>L</sub>, e<sup>+</sup><sub>R</sub>).
- Lumis are 10.4, 20.1, 32.2, 109 fb<sup>-1</sup>.
- Events of interest have a wide range of di-muon mass values.



# Muon pT distributions



Note that ILD DBD momentum resolution numbers only verified up to p =100 GeV. But expected to be reliable.

#### ECMP as an estimator of ECM



# ECMP as an estimator of ECM





ECMP often is very well correlated with ECM. But long tails : eg hard ISR from BOTH beams ECMP measured has additional effects from momentum resolution

# Calculating error on $\sqrt{s_P}$

• Can write

$$\sqrt{s_{P}} = E_{1} + E_{2} + |p_{12}|$$

$$= \sqrt{(p_{1}^{2} + m^{2})} + \sqrt{(p_{2}^{2} + m^{2})}$$

$$+ \sqrt{(p_{1}^{2} + p_{2}^{2} + 2p_{1}p_{2}\cos\psi_{12})}$$

- Then write  $p_1 = \csc \theta_1 / \kappa_1$  with  $\kappa_1 = 1/pT_1$  and similarly for  $p_2$ . Use errors on  $\kappa$  from DBD.
- Then do error propagation (neglecting angle errors).

#### **Error on \sqrt{s\_P} estimator from momentum resolution**

• Using general expression with error propagation. Does not use zero pT approximation. Assumes angle errors negligible.



Error distribution is complicated. Reflects the kinematics, beamstrahlung, ISR, FSR, polar angles and p resolution.



Pull distribution has correct width. 10% +ve bias presumably due to errors being Gaussian in curvature (1/pT) not in p.

## ECMP Distributions (error<0.8%)



# M > 245 GeV

Why is the error distribution so complicated ??

I don't fully understand but is a complicated mix of p1, p2,  $\cos\theta 1$ ,  $\cos\theta 2$ and the x1, x2 distributions.

This slide and next ones show error vs cosθ of most forward muon for various dimuon mass bins.



# 120 < M < 245 GeV



# Z Events (60 < M < 120 GeV)



# M < 60 GeV

Error on ECMP divided by nominal ECM.

Not many events in this region with small error.



Max  $|\cos\theta|$ 

#### Basic selection at 250 GeV: require error < 0.8%

- Beam energy spread contributes 0.122% at 250 GeV.
- ECMP is well measured experimentally when the muons are in the acceptance.



# Error < 0.15%

RMS width of peak is less than 0.20%. As expected from convolving 0.12% with something like 0.13%.

Estimate error of 31 ppm for this sample based on 0.20% error and 60% of these events contributing to a measurement of the peak position.



## 0.15% < Error < 0.30%

RMS width of peak is about 0.30%.

As expected from convolving 0.12% with something like 0.23%.

Estimate 80% in peak.



## 0.30% < Error < 0.80%

RMS width of peak is about 0.6%.

Estimate 80% in peak



# **Statistical Errors**

- Numbers on previous slides estimated for the statistics of 1 LR stdhep file (10.4 inv fb).
- Weighted average of the 3 bins gives 15 ppm on peak  $\sqrt{s}$ .
- Canonical 250 inv fb at 250 GeV with equal weights of LR, RL and (80,30) polarization, gives 4 ppm on peak √s.
- (Remember 10 ppm on mW is 0.8 MeV)
  - Good prospects for beam energy precision at a level far better than what is required to make beam energy error for W mass measurements negligible.

# **ECMP** Errors at All Energies

0.8% is a sensible overall quality cut at 250 GeV.

Likely need to relax requirement at higher ECM.



#### <0.15%



#### 0.15 < Error < 0.30%



#### 0.3 < Error < 0.6%



#### 0.6% < Error < 0.8%



#### 0.8% < Error < 1.2%



#### 1.2< Error < 2.0%



# Can control for p-scale using measured di-lepton mass



Statistical sensitivity if one turns this into a Z mass measurement (if p-scale is determined by other means) is

1.8 MeV / √N

With N in millions.

Alignment ? B-field ? Push-pull ? Etc ...

This is about 100 fb<sup>-1</sup> at ECM=350 GeV.

# Z Mass distributions



No error cuts in these plots.

#### **Cross-check**

# KK2f MC v4.19b Study

Includes beamstrahlung (TESLA350 -CIRCE) but no momentum spread.

Sophisticated photon treatment including FSR and ISR+FSR interference. Find error of about 6 ppm. (For 350 fb<sup>-1</sup>, (80,30) +-, -+ assumptions as before) but just from this simple fit.



 $(E_1 + E_2 + p_{12})/350$ 

#### (E<sub>1</sub> + E<sub>2</sub> + p<sub>12</sub>)/350

Resolution is about 0.32%

#### KKMC from Jadach, Ward, Was

Note - need to get a robust fit implemented.

# **Beam Energy Spread**

- Current ILC Design.
- Not a big issue especially at high  $\sqrt{s}$

| IP RMS Energy spreads (%)       |    |       |       |       |         |       | 1000   | 1000   |
|---------------------------------|----|-------|-------|-------|---------|-------|--------|--------|
|                                 |    |       |       |       | 350     | 500   | A1     | B1B    |
| Centre of mass energy (GeV)     |    | 200   | 230   | 250   |         |       | 0.250  | 0.225  |
|                                 |    |       |       |       | 0,11    | 0,11  | 0,230  | 0,225  |
| Damping ring @ 5GeV             | e+ | 0,137 | 0,137 | 0,137 | 0,12    | 0,12  |        |        |
|                                 | e- | 0,12  | 0,12  | 0,12  |         |       | 0,109  | 0,109  |
|                                 |    |       |       |       | 1,13    | 1,13  |        |        |
| RTML @ 15 GeV                   | e+ | 1,23  | 1,23  | 1,23  | 1.13    | 1.13  | 1,36   | 1,51   |
| (assume no z-correlation)       | e- | 1,17  | 1,17  | 1,17  | _,      | _,_   | ,      | ,      |
|                                 |    |       |       |       | 0.097   | 0.068 | 0.041  | 0.045  |
| Main linac                      | e+ | 0,185 | 0,160 | 0,148 | 0.097   | 0.068 | 0,041  | 0,045  |
|                                 | e- | 0,176 | 0,153 | 0,140 | 0,007   | 0,000 | 0,014  | 0,014  |
| Long. wakefield contribution    |    | 0,046 | 0,039 | 0,036 | 0,020   | 0,018 |        |        |
|                                 |    |       |       |       | 0 1 2 2 | 0 102 | 0,071  | 0,071  |
| Positron undulator contribution | e- | 0,098 | 0,113 | 0,123 | 0,122   | 0,105 | ,      | ,      |
| ID see loss                     |    | 0 100 | 0.105 | 0.153 | 0 100   | 0.070 | 0.0/13 | 0.0/17 |
| IP value                        | e+ | 0,190 | 0,165 | 0,152 | 0,100   | 0,070 | 0,045  | 0,047  |
|                                 | e- | 0,206 | 0,194 | 0,190 | 0,158   | 0,124 | 0,083  | 0,085  |

#### LEP2 was 0.19% per beam at 200 GeV

# Summary Table

ECMP errors based on estimates from weighted averages from various error bins up to 2.0%. Assumes (80,30) polarized beams, equal fractions of +- and -+.

(Statistical errors only ...)

| ECM (GeV) | L (inv fb) | $\Delta(\sqrt{s})/\sqrt{s}$ Angles (ppm) | $\Delta(\sqrt{s})/\sqrt{s}$<br>Momenta<br>(ppm) | Ratio |
|-----------|------------|------------------------------------------|-------------------------------------------------|-------|
| 250       | 250        | 64                                       | 4.0                                             | 16    |
| 350       | 350        | 65                                       | 5.7                                             | 11.3  |
| 500       | 500        | 70                                       | 10.2                                            | 6.9   |
| 1000      | 1000       | 93                                       | 26                                              | 3.6   |

< 10 ppm for 200 – 500 GeV CoM energy

## Conclusions

- The  $\sqrt{s_P}$  method looks very promising for obtaining a high precision measurement of the peak centre-of-mass energy.
- This should work well especially for 161-500 GeV
  - Better than 10 ppm is within reach.
- A LEP2 style W mass measurement at 250-350 GeV?
- Important aspects will be
  - Luminosity spectrum determination
    - Can use μμ in addition to Bhabha events
  - Tracker-alignment, B-field
  - Momentum-scale determination (not necessarily relying on m<sub>z</sub>)
  - Momentum resolution understanding
  - Excellent momentum resolution in endcap

# **Backup Slides**

## Check intrinsic resolution for Method P



p(e+) / 125.0 0.15%

> 0.51% (0.34% central part)

 $(E_1 + E_2 + p_{12})/250$ 

 $(E_1 + E_2 + p_{12})/250$ 

# Contribution from Momentum Resolution.

Calculate error from the measured  $p_T$ 's and polar angles of each muon.

Combined this gives a range of errors from event-to-event with symmetric events having an error of around 0.14%.

Can also use this information to improve the statistical power.



# **Momentum Resolution**

Currently use the large polar angle parametrization from ILD LOI (blue line).

 $\sigma_{1/p_T} = a \oplus b/(p_T \sin \theta)$ 

#### Where

 $a = 2 \times 10^{-5} \,\text{GeV}^{-1}$  and  $b = 1 \times 10^{-3}$ Should be OK for the full TPC coverage ( $\theta > 37^{\circ}$ )

Plot is data from Steve Aplin's macro. Superimposed curves have a,b parameters tweaked for  $\theta$ =7°,20°,30° to give a decent fit for p > 10 GeV.

Will need good parametrized description of this and/or use SGV particularly for high  $\sqrt{s}$  (for highly boosted di-muons).



## **Whizard Generator Level Studies**

ECM = 250 GeV.  $e_{L}e_{R} \rightarrow \mu \mu$ Require 81.2 < M < 101.2 GeV.  $\sin\theta > 0.12$ .  $\sigma = 3.84 + 0.02$  pb



Tail to low mass from FSR

Distribution is sensitive to luminosity spectrum. Not clear to me if beam energy spread is properly included.

# Whizard Generator Level Studies

#### ECM = 250 GeV. e-L e+R $\rightarrow \mu \mu$

#### Check characteristics of photonic system (ISR + FSR).



As expected, photonic system usually has small  $p_T$ , and low mass – making 3-body assumption often plausible. But double ISR from opposite beam particles does give long tail to high mass.

## KKMC Study contd.



m<sub>12</sub> < 200 GeV

m<sub>12</sub> > 200 GeV

High mass and low mass have similar sensitivities. High mass – more events in peak, less tail - but worse intrinsic resolution (high  $p_T$ ).

# Tim's Conjecture

- Slides from Tim suggest that one can fit for the tracker momentum scale without using the Z peak.
- This does not appear to be the case in my simplified tests with 3body zero pT photon with m≈m<sub>z</sub> and no additional complications.
- Tests done with shifted  $\sqrt{s}$  and shifted tracker momentum-scale factors
  - see no ability to distinguish a shift in one from a shift in the other.
- Because of the basic 1-1 correspondence between track pT and the  $\sqrt{s_P}$  estimate, this seems to me unlikely to be correct.

$$\sqrt{s_{\rm P}} = p_{\rm T} \left( \frac{1 + \cos \theta_1}{\sin \theta_1} + \frac{1 + \cos \theta_2}{\sin \theta_2} \right)$$

 This is a pity – but we should have handles on the momentum scale – not least the Z mass.