ILD: Detector Performance

Graham W. Wilson

University of Kansas Como Workshop, May 17th 2013

Outline

- Introduction
 - ILD evolution
- ILD
 - Detector Concept
 - Detector Sub-systems
 - Detector Performance Studies
 - Physics Benchmark Performance
 - (More detailed engineering and detector integration)
 - push-pull, power-pulsing, assembly, calibration, alignment ...

The ILD Detector Baseline Document (DBD) will be in one of the volumes of the ILC TDR that will be released on June 12th 2013 (Accelerator, Physics, ILD, SiD)

See DBD and LOI for more details.

ILD

- Origins in the TESLA, JLC and LD detector concepts.
- First conceptual reports in the mid 90s.
- ILC Reference Design Report (RDR) 2007
 - GLD Detector Outline Document (DOD) arXiv:physics/0607154
 - LDC DOD

- LDC + GLD => ILD (2007)
- <u>ILD Letter of Intent 2009</u> (695 signatories)
- LoI validated by IDAG (<u>link</u>)

Silicon or Gaseous Central Tracking Detector?

silicon

Scale X 002.315 Scale Z 002.315 Scale Z 002.315

aseous

same event

The detector we are planning to build is more akin to an electronic bubble chamber than an LHC detector but with true 3D volume pixels and exquisite calorimetry too.

ILD Detector Concept

- Physics needs drive the detector design
- Experience, particularly from LEP, points towards:
 - Particle-flow for complete event reconstruction
 - A highly redundant and reliable TPC-centered tracking design emphasizing pattern recognition capabilities and low mass tracking
 - "dE/dx for free", and V⁰ reconstruction (K_S, Λ , γ conversion)
 - A fine granularity calorimeter capable of particle-flow
 - Ultra-hermetic
- Accelerator and tracking system designed with sufficient safety margin to operate reliably.

Event Reconstruction

The Vision: Do the best possible physics at the linear collider. Reconstruct as far as possible every single piece of each event.

Like bubble chamber reconstruction.

But with full efficiency for photons and neutral hadrons in a high multiplicity environment at high luminosity.

What kind of physics ?

- Processes central to the perceived physics program :
 - 2f at highest energy, W, Z
 - Zh
 - vvh
 - tt, tth
 - Zhh, vvhh
 - Charginos, neutralinos, sleptons if kinematically accessible
- These emphasize:
 - Jet energy resolution (assumed to be done with particle flow) aiming for W/Z separation
 - Hermeticity
 - Granularity
 - Leptons, taus, b, c tagging
 - Control of initial-state parameters (L, E, P, dL/dE)

Detector design requirements

- Detector design should be able to do excellent physics in a cost effective way.
 : the physics we know is there, may be there, and new unexpected physics
- Very good **vertexing** and **momentum** measurements $\sigma_b = 5 \oplus 10/(p \beta \sin^{3/2}\theta) \mu m$ $\sigma(1/p_T) \le 2 \times 10^{-5} \text{ GeV}^{-1}$
- Good electromagnetic energy measurement.

 $\sigma_{\rm E}/{\rm E} \approx 15\%/\sqrt{{\rm E}~({\rm GeV}) \oplus 1\%}$

- The physics demands hermeticity and the physics reach will be significantly greater with state-of-the art **particle flow**
 - Close to 4π steradians. $\sigma_{E_{iet}}/E_{jet} \approx 3 4\%$ (W, Z separation)
 - Bubble chamber like track reconstruction.
 - An integrated detector design.
 - Calorimetry designed for resolving individual particles.

Particle-Flow in a Nut-Shell

E(jet) = E(charged) + E(photons) + E(neutral hadrons)

 Outsource 65% of the event-energy measurement responsibility from the calorimeter to the tracker

Basics

- Emphasize particle separability (large R) and tracking
- Leading to better jet energy precision
- Reduce importance of hadronic leakage
 - Now only 10% instead of 75% of the average jet energy is susceptible
 - Detector designs suited to wide energy range
- Maximize event information
 - Aim for full reconstruction of each particle including V⁰s, kinks, π⁰ etc.
 - Facilitates software compensation and application of multi-variate techniques

Particle AVERAGEs

LOI Global Detector Optimization

Choices

- Based on the optimization studies, we came to a consensus in Fall 2008 for a detector with B= 3.5 T (nominal) and $R_{ECAL}=$ 1.85 m for the LoI.
- Arguments for Larger
 - Particle-flow performance
 - High p_T muon momentum resolution
 - π^0 reconstruction (τ)
- Arguments for Smaller / Higher Field
 - Background sensitivity of VTX. Inner hit density ~ $1/\sqrt{B}$
 - Impact parameter at low p_T
 - Cost
- For the DBD process, the global detector parameters have stayed the same.
 - Should be re-quantified with current understanding and technological options.

Designing a Detector with Margin

- Primary concern was to make sure the performance of the designed detector met or exceeded those envisaged for the physics
 - Design philosophy is cost-conscious, but meeting the required performance/physics goals is the main design criterion
- Kept a solenoid engineered for 4T with nominal field of 3.5T
- Increased the depth of the HCAL(6.8 λ_{I} incl. ECAL)
 - More margin for higher energy jets / higher \sqrt{s}
- Chose an ECAL effective cell size of 5mm × 5mm.
- Studying the merits of the additional tracking sub-detectors
 - Increased precision, redundancy, alignment capabilities, time-stamping, more material

The ILD design also serves as a good starting point for a CLIC detector. See Philipp Roloff's talk and CLIC_ILD.

Current Particle Flow Performance

13

(ILD o1 v5)

ILD Detector Sub-systems

Barrel Detector Parameters

Barrel sy	Barrel system									
System	R(in)	R(out) [mm]	z	comments						
VTX	16	60	125	3 double layers layer 1: $\sigma < 3 \mu m$	Silicon pixel sensors, layer 2: $\sigma < 6 \mu m$	layer 3-6 $\sigma < 4 \mu m$				
Silicon										
- SIT	153	300	644	2 silicon strip layers	$\sigma=7\mu m$					
- SET	1811		2300	2 silicon strip layers	$\sigma=7\mu m$					
- TPC	330	1808	2350	MPGD readout	$1 \times 6 \text{mm}^2 \text{ pads}$	$\sigma~=~60 \mu m$ at zero drift				
ECAL	1843	2028	2350	W absorber	SiECAL	30 Silicon sensor layers, $5 \times 5 \text{ mm}^2$ cells				
					ScECAL	30 Scintillator layers, $5 \times 45 \text{ mm}^2$ strips				
HCAL	2058	3410	2350	Fe absorber	AHCAL	48 Scintillator lay- ers, 3×3 cells, analogue				
					SDHCAL	48 Gas RPC layers, $1 \times 1 \text{ cm}^2$ cells, semi-digital				
Coil	3440	4400	3950	3.5 T field	2λ					
Muon	4450	7755	2800	14 scintillator layers						

Endcap Detector Parameters

End cap system								
System	z(min)	z(max) r(min) r(max), comments)				
		[mm]						
FTD	220	371		2 pixel disks	$\sigma = 2 - 6\mu m$			
				5 strip disks	$\sigma=7\mu m$			
ETD	2420	2445	419- 1822	2 silicon strip layers	$\sigma = 7 \mu m$			
ECAL	2450	2635		W-absorber	Siecal	Si readout layers		
					ScECAL	Scintillator layers		
HCAL	2650	3937	335- 3190	Fe absorber	AHCAL	48 Scintillator lay- ers 3×3 cells, analogue		
					SDHCAL	48 gas RPC lay- ers 1×1 cm ² cells, semi-digital		
BeamCal	3595	3715	20- 150	W absorber	30 GaAs readout layers	Ŭ		
Lumical	2500	2634	76- 280	W absorber	30 Silicon layers			
LHCAL	2680	3205	93- 331	W absorber				
Muon	2560		300- 7755	12 scintillator layers				

Vertex Detector

Several different technologies: pixel sensors, readout scheme, material budget. CMOS, FPCCD, DEPFET. Pairs background => Inner radius ~ $1/\sqrt{B}$

Baseline geometry: 3 double-layers.

	R (mm)	z (mm)	$ \cos \theta $	σ (μ m)	Readout time (μ s)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95	4	100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.9	4	100

CMOS and FPCCD solutions meet the design requirement of $\sigma_b=5 \oplus 10/(p \beta \sin^{3/2}\theta) \mu m$

See Marc Winter's talk

Main Tracker: TPC

Supplemented by stand-alone VTX tracking, SIT + Forward tracking disks.

SET and ETD provide precise external space-point.

3 10⁹ volume pixels. 224 points per track. Single-point resolution 50 - 100 μ m r- ϕ , 400 μ m r-z [cos θ] < 0.985 (TPC) [cos θ] < 0.996 (FTD)

Readout options: GEM, Micromegas. Alternative: Si Pixel

SIT and FTD are essential elements of an integrated design.

TPC Performance Prospects

Point resolution requirements achieved.

Integrated system performance and 2-track separation under study.

See Astrid Muennich's talk for more details

Silicon Tracking Components

SIT = 2 space points

SET, ETD = 1 space point

FTD = 9 space points

SIT (baseline = false double-sided Si microstrips)								
	Geometry		Characteris	Material				
R [mm]	Z [mm]	$\cos \theta$	Resolution R- ϕ [μ m]	Time [ns]	X_0 [%]			
153	368	0.910	R: σ=7.0	307.7 (153.8)	0.65			
300	644	0.902	z: σ=50.0	$\sigma = 80.0$	0.65			
SET (baseline = false double-sided Si microstrips)								
	Geometry		Characteris	Material				
R [mm]	Z [mm]	$\cos \theta$	Resolution R- ϕ [μ m]	Time [ns]	X_0 [%]			
1811	2350	0.789	R: σ=7.0	307.7 (153.8)	0.65			
ETD (baselin	e = single-sic	ded Si micro-str	ips)					
	stics	Material						
R [mm]	Z [mm]	$\cos \theta$	Resolution R- ϕ [μ m]					
419.3-1822.7	2420	0.985-0.799	x: σ=7.	0.65				

FTD (baseline: pixels for two inner disks, microstrips for the rest)

R [mm]	Geometry Z [mm]	$\cos \theta$	Characteristics Resolution R- ϕ [μ m]	Material RL [%]
39-164 49.6-164 70.1-308 100.3-309 130.4-309 160.5-309 190.5-309	220 371.3 644.9 1046.1 1447.3 1848.5 2250	0.985-0.802 0.991-0.914 0.994-0.902 0.994-0.959 0.995-0.998 0.996-0.986 0.996-0.990	σ=3-6 σ=7.0	0.25-0.5 0.25-0.5 0.65 0.65 0.65 0.65 0.65

Tracking System

Complete TPC coverage to 37° VTX + SIT + FTD + SET + ETD => precision, redundancy and coverage to $|\cos\theta| = 0.996$.

Tracking Performance

 $e^+e^- \rightarrow t$ tbar $\rightarrow 6$ jets with machine backgrounds

dE/dx performance similar to ALEPH, OPAL

Straightforward V⁰ reconstruction

Highly efficient tracking.

Central component of particle-flow performance.

Expected occupancy < 0.5% TPC tracking should be robust to ×20

Momentum Resolution

Matches well requirements from Higgs recoil measurement.

m_{recoil}/GeV

Vertexing Performance

Curves are: $\sigma_b=5 \oplus 10/(p \beta \sin^{3/2}\theta) \mu m$

Calorimetry Technologies

All are studied by CALICE

- ECAL $(23 X_0: 20 \times 0.6 X_0 + 9 \times 1.2 X_0)$
 - Silicon-W
 - transverse cell-size 5mm X 5mm
 - Scintillator-W with MPPC readout
 - 5mm X 45 mm X 2mm strips
 - (Digital: MAPS)
- HCAL
 - Analog : Scintillator + Stainless Steel.
 - Tiles with Si-PM readout
 - 3mm Sc, 3cm X 3cm.
 - Digital/Semi-Digital : Gas + Stainless Steel.
 - Glass RPCs or MPGDs, 1cm X 1cm

Calorimetry Options Studied

- ILD_o1: Si-W ECAL, Analog HCAL (Scint-Fe).
- ILD_o2: Scint-W ECAL, Analog HCAL (Scint-Fe)
- ILD_o3: Si-W ECAL, Semi-digital HCAL (Gas-Fe)
- Ongoing work looking at hybrid Si/Scint with W ECAL designs (cost awareness).

The Calorimeter ?

Many options under study (see Felix Sefkow talk)

44.3%

1.8%

local SC

NB Performance = mix of hardware + software algorithms. Room for further improvement in each.

Forward Region

Goals: Measure precision luminosity (with Bhabhas) and provide hermeticity down to around 5 mrad. Accommodate \pm 7 mrad crossing angle.

LumiCal (32-74 mr) LHCal (4λ plug) BeamCal (5-40 mr)

Worth noting

- Instrumented Yoke
 - Straightforward
- Trigger
 - No Hardware trigger
- Data Acquisition
 - Expected data volume OK

Sub-detector	Channels [10 ⁶]	Beam induced [Hits/BX]	Noise [Hits/BX]	Data volume per train [MB]
VTX (CPS)	300	1700	1.2	< 100
VTX (FPCCD)	4200	1700	1200	135
TPC	2	216	2000	12
FTD	1	260	0.3	2
SIT	1	11	0.3	6
SET	5	1		1
ETD	4			7
SiECAL	100	444	29	3
ScECAL	10	44	40	
AHCAL	8	18000	640	1
SDHCAL	70	28000	70	
MUON	0.1		8	≤ 1
LumiCal	0.2			4
BeamCal	0.04			126**

Top pair production

$\sqrt{s} = 500$ GeV. Full simulation

Analysis uses particle-flow reconstruction, b-tagging, and kinematic fit.

Result: statistical error of 30 MeV for 500 fb⁻¹

(Factor of 2.5 improvement in sensitivity over hadronic-only study of PRD 67, 074011 (2003).

(4) Jets + Missing Energy

$$e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow qq \tilde{\chi}_1^0 qq \tilde{\chi}_1^0$$

√s=500 GeV

m(C₁,N₂) ≈ 210 GeV m(N₁) = 117 GeV

Spectroscopy in complicated final state feasible

 $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow qq \tilde{\chi}_1^0 qq \tilde{\chi}_1^0$

Physics Benchmark Performance Summary

\sqrt{s}	Observable	Precision	Comments		
	$\sigma({\rm e^+e^-} \to {\rm Z}h)$	±0.30 fb (2.5%)	Model Independent		
250 GeV	m_h	32 MeV	Model Independent		
	m_h	27 MeV	Model Dependent		
	$Br(h ightarrow { m b}\overline{{ m b}})$	2.7 %	includes 2.5 %		
250 GeV	$Br(h \to c\overline{c})$	7.3%	from		
	$Br(h \to gg)$	8.9%	$\sigma({\rm e^+e^-} \to {\rm Z}h)$		
	$\sigma({\rm e^+e^-}\to\tau^+\tau^-)$	0.29 %	$\theta_{\tau^+\tau^-} > 178^\circ$		
500 GeV	A_{FB}	± 0.0025	$\theta_{\tau^+\tau^-} > 178^\circ$		
	$P_{ au}$	± 0.007	exclucing $ au o a_1 u$		
	$\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$	0.6 %			
	$\sigma(e^+e^- \to \tilde{\chi}^0_2 \tilde{\chi}^0_2)$	2.1 %			
500 GeV	$m({ ilde \chi}_1^\pm)$	2.4 GeV	from kin. edges from kin. edges		
	$m(ilde{\chi}_2^0)$	0.9 GeV			
	$m(ilde{\chi}^0_1)$	0.8 GeV	from kin. edges		
	$\sigma(\mathrm{e^+e^-} \to \mathrm{t}\overline{\mathrm{t}})$	0.4 %	$(bq\overline{q})$ $(\overline{b}q\overline{q})$ only		
500 CaV	m_t	40 MeV	fully-hadronic only		
JUU Gev	m_t	30 MeV	+ semi-leptonic		
	Γ_t	27 MeV	fully-hadronic only		
	Γ_t	22 MeV	+ semi-leptonic		
	$A^t_{\mathrm FB}$	± 0.0079	fully-hadronic only		
500 C d/	$\sigma({\rm e^+e^-}\rightarrow\tilde{\mu}^+_L\tilde{\mu}^L)$	2.5 %			
SOO Gev	$m(ilde{\mu}_L)$	0.5 GeV			
500 GeV	$m(ilde{ au}_1)$	$0.1 \mathrm{GeV} \oplus 1.3\sigma_{\mathrm{LSP}}$	SPS1a'		
1 TeV	$lpha_4$	$-1.4 < \alpha_4 < 1.1$	SPS1a'		
TIEV	α_5	$-0.9 < \alpha_5 < +0.8$	WW Scattering		

Studies done with full simulation including SM physics backgrounds

32

Concluding Remarks

- ILD is a mature detector concept well suited to ILC physics requirements.
- ILD is keeping its options open in terms of technological solutions for detector subsystems.
 - Together with the detector R&D collaborations we have developed many of the tools needed to make informed choices.
- Still lots of room for innovation and new ideas.
- ILD welcomes new and returning members.
- ILD is taking steps towards more formal membership and governance in anticipation of becoming a real collaboration with an actual project.
- Upcoming meetings of relevance
 - ECFA LC2013, DESY, Hamburg, May 27-31.
 - Dedicated ILD Workshop, September? Likely in Europe.

Backup Slides

Is ILD jet energy resolution "good enough"?

Single W study at $\sqrt{s} = 1$ TeV

=> Further E_{jet} resolution improvement very desirable

$W \rightarrow q q$ (jets are not so energetic)

Is this useful for physics ? Example m_w.

Very useful ! (Especially, if the really challenging requirements on jet energy scale and calibration can be met !)

MDI / Detector Integration

- Real-world engineering and design issues investigated
 - Detector assembly and maintenance
 - Push-pull
 - Backgrounds
 - Alignment, power, cooling, cables
 - Etc/etc
- So far no show stoppers
- Will need extensive engineering support as we move forward

What is particle flow ? $E_{jet} = E_{ch} + E_{\gamma} + E_{NH}$

Emphasizes particle separability \rightarrow large R

Estimated Relative Costs

Total about 400 MILCU. Comparable to an LHC detector.

Instrumented Return Yoke

Yoke is large. It will be instrumented for muon detection: scintillator strips, RPCs considered.

Instrumented gaps can serve as a tail-catcher. More important at high energy, or if CAL system is thinner than current 6.8 λ (48 HCAL layers).

ILC Accelerator Parameters

Parameters of interest for precision measurements:

Beam energy spread,
Bunch separation,
Bunch length,
e⁻ Polarization / e⁺ Polarization,
dL/d√s ,
Average energy loss,
Pair backgrounds,
Beamstrahlung characteristics,

and of course luminosity.

								L Upgrade	E _{an} Uj	pgrade
Centre-of-mass energy	Em	GeV	200	230	250	350	500	500	1000	1000
-									Al	BIb
Beam energy	Ebeam	GeV	100	115	125	175	250	500	500	500
Lorentz factor			******	******	******	******	******	*****	9,78E+05	9,78E+05
Collision rate	frep	Hz	5	5	5	5	5	5	4	4
Electron linac rate	flinec	Hz	10	10	10	5	5	5	4	4
Number of bunches	n _b		1312	1312	1312	1312	1312	2625	2450	2450
Electron bunch population	Ν.	×10 ¹⁰	2,0	2,0	2,0	2,0	2,0	2,0	1,74	1,74
Positron bunch population	N_{+}	×10 ¹⁰	2,0	2,0	2,0	2,0	2,0	2,0	1,74	1,74
Bunch separation	tb	ns	554	554	554	554	554	366	366	366
Bunch separation ×f _{RF}	t _b f _R	न	720	720	720	720	720	476	476	476
Pulse current	Iteam	mA	5,8	5,8	5,8	5,8	5,79	8,75	7,6	7,6
RMS bunch length	z	nnu	0,3	0,3	0,3	0,3	0,3	0,3	0,250	0,225
Electron RMS energy spread	p/p	%	0,206	0,194	0,190	0,158	0,124	0,124	0,083	0,085
Positron RMS energy spread	p/p	%	0,190	0,165	0,152	0,100	0,070	0,070	0,043	0,047
Electron polarisation	Ρ.	%	80	80	80	80	80	80	80	80
Positron polarisation	\mathbf{P}_{+}	%	31	31	30	30	30	30	20	20
Horizontal emittance	x	m	10	10	10	10	10	10	10	10
Vertical emittance	у	nm	35	35	35	35	35	35	30	30
IP horizontal beta function	**	nm	16,0	14,0	13,0	16,0	11,0	11,0	22,6	11,0
IP vertical beta function (no TF)	, *	nm	0,34	0,38	0,41	0,34	0,48	0,48	0,25	0,23
IP RMS horizontal beam size	×	nm	904	789	729	684	474	474	481	335
IP RMS veritcal beam size (no TF)	y*	nm	7,8	7,7	7,7	5,9	5,9	5,9	2,8	2,7
Horizontal distruption parameter	Dx		0,2	0,2	0,3	0,2	0,3	0,3	0,1	0,2
Vertical disruption parameter	D,		24,3	24,5	24,5	24,3	24,6	24,6	18,7	25,1
Horizontal enhancement factor	H _{Ds}		1,0	1,1	1,1	1,0	1,1	1,1	1,0	1,0
Vertical enhancement factor	H _{Dy}		4,5	5,0	5,4	4,5	6,1	6,1	3,5	4,1
Total enhancement factor	H _D		1,7	1,8	1,8	1,7	2,0	2,0	1,5	1,6
Geometric luminosity	Lgoom	×10 ¹⁴ cm ⁻² s ⁻¹	0,30	0,34	0,37	0,52	0,75	1,50	1,77	2,64
Luminosity	L	×10 ³⁴ cm ⁻² s ⁻¹	0,50	0,61	0,68	0,88	1,47	2,94	2,71	4,32
Average beamstrahlung parameter	av		0,013	0,017	0,020	0,030	0,062	0,062	0,127	0,203
Maximum beamstrahlung paramete	max		0,031	0,041	0,048	0,072	0,146	0,146	0,305	0,483
Average number of photons / partic	n		0,95	1,08	1,16	1,23	1,72	1,72	1,43	1,97
Average energy loss	Eas	%	0,51	0,75	0,93	1,42	3,65	3,65	5,33	10,20
Luminosity	L	×10 ³⁴ cm ⁻² s ⁻¹	0,498	0,607	0,681	0,878	1,50	3,00	3,23	4,31
Coherent waist shift	Wy	m	250	250	250	250	250	250	190	190
Luminosity (inc. waist shift)	L	×10 ³⁴ cm ⁻² s ⁻¹	0,56	0,67	0,75	1,0	1,8	3,6	3,6	4,9
Fraction of himinosity in top 1%	L _{0.01} /L		91,3%	88,6%	87,1%	77,4%	58,3%	58,3%	59,2%	44,5%
Average energy loss	Eas		0,65%	0,83%	0,97%	1,9%	4,5%	4,5%	5,6%	10,5%
Number of pairs per bunch crossing	N	×10*	44.7	55.6	62.4	93.6	139.0	139.0	200.5	382.6

Comparison of Tracker Resolution with Calorimetric Resolution

• ECAL and HCAL based energy measurements for charged particles are not competitive with design momentum resolution over the complete ILC envisaged energy range.