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“the calorimetry is key”

Graham W. Wilson, Univ. of Kansas, 
Victoria Workshop, July 30th 2004

Detector Designs with Large Volume 
Gaseous (Low Mass) Tracking
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Plan

• Introduction
• Design overview
• Key choices

– What E-flow performance do 
we want/need ?

– Tracker
– B-field (for vertexing)
– Calorimetry
– Magnet design

This talk is NOT a detailed intro to a 
particular detector design Z H events
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Sociology 

• Many of us think we know how (not) to do things from 
our previous experiments.
– Can yield valuable insight. (eg. e+e- at √s=210 GeV, SLC)
– Can lead to the right answer for the wrong reason (this is OK)
– Can lead to the wrong approach because of blinkered thinking 

• => Essential to bounce ideas around and not accept 
conventional wisdom

It is interesting to see how the PETRA detectors did or did not 
lead to the more successful LEP experiments ! 
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The LEP Detectors – same scale
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A really Large Detector: L3

This is not the kind of large detector that is being considered !
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• TESLA TDR
• Snowmass 

ResourceBook (LD)
• GLC
• TESLA CDR
• JLC

References to previous work

Global effort can pool resources, take 
advantage of existing work, and with 
a cooperative spirit, advance this type 

of detector design towards the real 
world of physics opportunity

Also new initiative, discussed 
by S. Komamiya, similar to 

LDmar01, emphasizing large R 
calorimetry
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Detector design overview
• Detector design should be able to do excellent physics in a cost

effective way.
– both the physics we expect, and the new unexpected world that awaits

• Very good vertexing and momentum measurements are 
desirable.

• Reasonably good electromagnetic energy measurement.

• The physics demands hermeticity and the physics reach will be 
significantly greater with state-of-the art energy flow
– Close to 4π steradians.
– Bubble chamber like track reconstruction.
– An integrated detector design.
– Calorimetry designed for resolving individual particles.

σb=5 ⊕ 10/(pβsin3/2θ) µm σ(1/pT) § 7 ä10-5 GeV-1

σE/E ≈ 10%/√E (GeV) ⊕ 1%

σEjet/Ejet ≈ 30%/√Ejet (GeV) 
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What is E-flow ?
See Henri Videau’s talk at Paris LCWS for a thorough introduction

Particle-by-particle event 
reconstruction

T         E        T        T       H

HCAL

ECAL
γ π- e-

n
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Average di-jet mass 
(GeV)
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Di-jet mass distribution vs Ejet resolution
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Comparing e+e- →WW 
and

e+e- →ZZ at √s=300 GeV

(hadronic decays only, 
assume WW:ZZ = 1:1 

for illustration)

σ(Ejet) = 
xx%√Ejet(GeV)

W+W-

Z0 Z0

30%√Ejet is a good target. 
Physics (Γw=2 GeV) may 

demand even more !

Reality = 7:1 !

No kinematic fits, just 
direct measurement
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Physics benchmarks – do not oversell !
Example: TESLA TDR analysis 

retains large eνWZ contamination 
• Chosen benchmarks can become 

scientifically questionable.
– Eg. We may really not care all that 

much about separating ννWW
from ννZZ (if light Higgs found)

• If we plan to take these seriously 
for detector design decisions, we 
really should be using all of the 
detector’s capabilities, and doing 
the ultimate analysis ~ impossible !
– Applicable kinematic fits (see 

previous slide !!)
– Non-hadronic decays of W and Z
– b and c-tagging
– electron vetoes
– Including backgrounds 
– Including systematics
– Etc, etc.

• Let’s use some common sense too !

What about the 
leptonic decays 

(GWW)?

My crystal ball predicts that at 
Durham :

Jean-Claude shows it can be removed and claims the best way 
to do the analysis is to also use b-tagging (see extra slides)
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60%√Ejet30%√Ejet

The (in)famous plot – now as a lego plot 
from my e+e- → WW, ZZ toy study

MASS  
J1-J2

MASS  
J3-J4

WW ZZ
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30%√Ejet
Intrinsic W, Z width only 

(perfect resolution)

But, clearly 30% is far from the point of 
diminishing returns !
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20%√Ejet

30%√Ejet

40%√Ejet

Wouldn’t 20% be really something !



Large or small detector ? 14

The pairs background 
and

the VXD inner radius 
⇒ minimum B

A naïve approachT. Maruyama

Particle flow:  
BR2 > c1

Coil: B2R2L 
< c2

5 T 

(Rcoil !, 
GWW)

Will 
return to 
this later

RECAL !

(R. Frey, LCWS2004)



Momentum resolution constraints on 
tracker
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Haijun Yang, 
Keith Riles

• Long standing performance driver 
assumed to be recoil mass to dimuon in Z 
H.

• LDMar01 detector has ∆(1/pT) = 3 ä10-5

• Plots include beam constraint
• Definitely good enough for Warm. 

Should be reverified again if the decision 
is Cold (less beamstrahlung)

• LD assumes point resolution of 120 µm 
in TPC. R&D suggests 50-70 µm 
achievable.

• TPC Tracker does not need to be 
“truly huge” to meet the momentum 
resolution specs.

√s=350 GeV
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Using real expt. 
(ALEPH+DELPHI+OPAL) 

reconstruction software

Will do even 
better
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Detailed studies of high level TPC 
tracking performance using CLEO 

track reconstruction
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Tracker technology choice
• For, BRtracker

2 > 7.5 T m2 , proponents are confident that a TPC can deliver the 
momentum performance (in combination with VTX)
– True 3-D imaging tracker with > 109 volume pixels
– Pattern recognition very robust wrt occupancy
– Provides modest dE/dx (4-5%) for “free”. Will make low p electron-ID superb. (but e-ID 

probably already superb)
– Robust V0-finding
– Can increase safety margin re backgrounds with gas choices, Rin (see M. Ronan talk)
– Long-standing strong international R&D program

• While a solid-state detector could also deliver the high-pT momentum performance, 
such a device is challenged by

– track reconstruction robustness
– material budget
– z-segmentation
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TESLA TDR

Vertexing constraints ?

(Y. Sugimoto)

R(mm)  tSi(µm)

need something like: σb=5 ⊕ 10/(pβsin3/2θ) µm

Driven by Rout/Rin
(magnification factor)

Driven by Rin, 
material

May need to compromise a 
little if B-field is lowered, but is 
superb charm-tagging really so 

paramount ?
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How to do E-flow well ?
• 1) Reconstruct charged tracks robustly, with high 

efficiency and reasonable p resolution.
– Performance = f (B Rtracker

2, Nhits, σpoint, PATREC)
• 2) Measure photons in ECAL. Avoid double counting 

of charged tracks in ECAL. Mainly charged-
hadron/photon separation.
– Performance = f (B RECAL

2, ECAL properties, algorithms)
– For the same RM and X0, the higher B RECAL

2 wins.
– Tungsten and a compact readout is the key to keeping RM low 

• 3) Measure neutral hadron energy in ECAL and HCAL 
avoiding contamination from charged particles, 
photons.
– Performance = f (above factors, granularity, etc)
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Intrinsic resolution / σ confusion

• σ2
jet= σ2

intrinsic + σ2
confusion

• Generic intrinsic resolution 
assumptions lead to jet energy 
resolutions ≈18%√Ejet (see backup 
slides)

• So, if ≈ 30%√Ejet is the goal, then 
σconfusion needs to be ≤ 24%√Ejet .

⇒ Detector 
concept 

should focus 
on 

resolvability 
of particles 
within jets.

⇒ Large 
RECAL,

⇒ Large 
RHCAL

What are the components of σconfusion ?
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What’s most important ?
Design studies must answer this systematically. Here’s my take.

• 1) Reconstruct charged tracks robustly, with high 
efficiency and correct track parameters (in z too!).
– Obviously a pre-requisite

• 2) Measure photons in ECAL. Avoid double counting 
of charged tracks in ECAL. Mainly charged-
hadron/photon separation.
– Seems to be the heart of the problem

• 3) Measure neutral hadron energy in ECAL and HCAL 
avoiding contamination from charged particles, 
photons.
– At some level, doing 1 and 2 well, will take care of 3 ??

The calorimetry is key !
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The LEP Detectors – same scale
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The LEP Detectors – BRECAL
2 scaling

(in visual area)

5.2 Tm2

5.1 Tm2

L3: 0.14 Tm2

The LC detector should be 
aiming for BRECAL

2 > 10 Tm2

2.6 Tm2 (B=0.435T) NB. CMS has only 8 Tm2
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Starting points

• JLC report 1992. Scale up OPAL?
• TESLA CDR circa 1996. Led by Ron Settles : scale up 

ALEPH. B=3T.
– TDR. Iterated to 4T (because CMS think it’s possible)

• North American “Large Detector”. Build a detector 
with a TPC tracker (Mike Ronan).

• This talk starts from the perception/prejudice that 
indeed “the calorimetry is key”.
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Why is the calorimetry key ?
• Calorimetry technology choices dictate RECAL
• EM calorimeters will be expensive
• Costs of particular EM calorimeters with the same 

compactness (RM and X0) scale with RECAL
2

• The arguably best solution, “Si-W partout”, inevitably 
has a high cost per unit volume. The TESLA TDR Si-
W ECAL may cost as much as 250 M$ (RECAL= 1.68 
m, B RECAL

2=11.3 Tm2).
• Alternative solutions eg. W-Scintillator or Si-W-

Scintillator hybrid may give competitive performance 
more cost effectively. (the key is the W and the 
compactness)
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From S. Komamiya

EM Calorimeters

• Area of EM CAL              
(Barrel + Endcap)
– SD: ~40 m2 / layer
– TESLA: ~80 m2 / layer
– LD: ~ 100 m2 / layer
– (JLC: ~130 m2 / layer)

SD: 1.27m

GLD: 2.1m

TESLA: 1
.68

m

GWW : BRECAL
2 = 8, 11.3, 12.0, 13.2 Tm2
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Take with a grain of sa
lt

Some opening gambits & possible consequences
• “Physics can make do with 

BRECAL
2 < 10 Tm2, Si-W is 

cost effective ”
• “Let’s do Si-W”
• How can you build it for 

just xxx/2 M$ ?
– Reduce RECAL
– And/or, worsen σE/E (less 

layers)
– Not enough Rtracker for 

gaseous tracker. 
– Silicon tracker

• Add material.
• Lose PATREC robustness
• Lose dE/dx

– Answer: “If proposal A gets 
xxx/2 M$, we really need zzz
M$ to be competitive in 
energy flow with proposal A”

• “Physics needs BRECAL
2 > 10 Tm2 

and Si-W is probably not the most 
cost effective solution”

• “can’t afford nominal Si-W”
– Develop ECAL design with lower cost 

per unit volume and competitive RM, X0

– Increase RECAL,investigate HCAL 
outside coil

– Lots of space for a gaseous tracker

• How can you build it for just     
xxx/2 M$? 
– Answer: “We really need yyy M$ to 

meet our revised upward physics specs. 
With xxx/2 M$, we would reduce RECAL
a little and still do much better than 
proposal B”
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My hermeticity pecking order
In most physics analyses with missing energy 

the first priority is identifying that there is 
genuine missing transverse momentum, how 

well you measure Σ pΤ is another issue.

• Electrons
• Photons
• Multi-particle Jet
• Isolated charged particles
• Muons
• Occupancy – eg. Background, cosmics etc ?
• Taus
• Last and by far least important: K0

L, neutron

?
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Cost Estimates

• Published cost estimates for TESLA, SD 
and LD are in TESLA TDR, Snowmass

• Given the uncertainties, extensive 
discussion is inappropriate.
– Major cost for SD, LD : magnet.
– Major cost for TESLA : Si-W ECAL.



• Seems hard to envisage 
something much more 
aggressive than CMS in 
stored energy (2.5 GJ).

• PDG quotes,                 
cost ~ U0.66 but based on 
old, scarce unreferenced 
data (in 1991$)

• Suggests we should be 
careful about assuming 
less than linear scaling of 
cost vs stored energy cf
CMS

Magnet prices are scary !

Green, Byrns, St. Lorant, 1992

31
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R&D on magnet design ??

• The choices regarding the solenoid geometry 
and engineering design have a major impact 
on the detector design and cost.

• HCAL outside solenoid option → emphasize 
“transparency” in X0, λ ( ~ B2 R for X0)
– Could a detector internal to the cryostat be 

remotely feasible with a multi-conductor 
approach ? (liquid He ! – not liquid N2.)

• Shouldn’t there be more effort in the 
direction of magnet R&D ?
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HCAL outside coil ?

Plot by 
Y. 

Makida
(KEK)

For B=3 T, 
RECAL=2.0 m, 
maybe 6 X0 is 

feasible

How does E-flow 
performance 

change as HCAL is 
placed outside a 
“thin” solenoid ?

N.B. RHCAL
increases too !
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A naïve approach

The pairs background 
and

the VXD inner radius 
⇒ minimum B

T. Maruyama

Particle flow:  
BR2 > c1

Coil: B2R2L 
< c2

5 T 

(Rcoil !, 
GWW)

RECAL !

(R. Frey, LCWS2004)
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Basic assumptions/dependencies
• Stored energy in coil: U≈0.5(π/µ0)Β2Rcoil

2Lcoil
• Assume 2.5 GJ (CMS) is a practical technical and fiscal upper 

limit.
• Energy flow performance depends on BRECAL

2 (RECAL = inner 
radius of ECAL)

• Detector aspect ratio. (relates Rcoil to Lcoil). 
– Take cosθ = 0.86 by default. Study 0.80, 0.71 too. 
– (needs to be revised, I used the ECAL aspect ratio, not the coil in slides)

• Rcoil = RECAL + ∆R, where ∆R accounts for space for calorimetry
internal to the mean coil radius and coil cryostat, inner windings 
etc.

• Two choices. 
– i) : ∆R=1.65 m (CMS-like, substantial room for HCAL inside coil)

ii) : ∆R=0.8 m (ALEPH-like, ECAL only inside coil).
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B (T)

RECAL (m)

2.5 Tm2

5 
10

15

20 Tm2

Improving   
E-flow 
performance

Red lines :

U < 2.5 GJ,

cosθ=0.86

Blue lines :

U < 2.5 GJ,

cosθ=0.71

∆R=0.8 m

∆R=1.65 m
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B (T)

RECAL (m)

Cosθ=0.86. U < 2.5 GJ, HCAL inside coil (∆R=1.65m)

Red line : U = 2.5 GJ

Heavy cyan line : 

10 T m2 contour.

Light cyan line :

15 T m2 contour.

Purple line: 
minimum B-field 
needed ?

10 Tm2

15 Tm2
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B (T)

RECAL (m)

CMS magnet (2.5 GJ) is challenging !

What about U 
< 1.25 GJ ? 15 Tm2

10 Tm2∆R=1.65 m

∆R=0.8 m
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cosθ = 0.86      0.80                0.71

1000 m2

2000 m2

4000 m2

3000 m2

Silicon area for 40 
layers, 20 cm depth.

Barrel cylinder + 2 
endcap disks

ECAL geometry

TESLA

SD

See also J-C Brient talk at LCWS04

How much should we fight for superb E-flow in the endcap ?

θ
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Concluding remarks
The detector design concept with large volume gaseous tracking 
has broad support in each region.
– It appears to be a detector concept that is feasible.
– Needs R&D support in North America.
– TPC tracking is a natural front-runner for such a detector.
– The calorimetry solution is key to the physics and costing.

• A concerted inter-regional effort, with open participation, 
focussed on the main design issues, can explore the design 
parameters, and deliver a design concept worthy of the LC 
accelerator

• Scientific cross-checks DEMAND 2 viable detectors
– SiD is a development which will foster a complementary detector design.
– Is it viable ?
– Urge cooperation on issues of common interest (eg. magnet, calorimetry)
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Backup slides
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Dependence of E-jet resolution on 
EM energy resolution (stochastic 

term) 
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Energy resolution for sampling W 
calorimeters

GWW

42 layers = 2.5 mm W 

56 layers = 1.75 mm W

75 layers = 1.4 mm W

135 layers = 0.78 mm W

Cost issues: 

W cost ≈ independent of 
thickness if rolled ?

Si and scintillator scale as 
area, and can be more 
expensive if thinner.

Photons

Also plotted, CALICE, Asian, LCCAL, PbWO4
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Compactness
Tungsten-Silicon EM Calorimeter

Gap thickness (mm)
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Need to minimise gaps, reduce space needed for 
fiber routing, by sharing fiber routing gaps 
among layers

Lower curves, no gap

Upper curves, 
1mm gap

CALICE

Assume 25% of scintillator
thickness used for readout

Pb
WO4

Also plotted: Asian, LCCAL (Pb)
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S. Komamiya

R

d=0.15BR2/pt

B=0
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• Figure of merit : Calorimeter
� σjet

2 = σch
2 + σγ

2 + σnh
2 + σconfusion

2 + σthreashold
2

– Separation of charged particles and γ/nh is important (See 
H.Videau’s talk at LCWS2004)

– Charged particles should be spread out by B field
– Lateral size of EM shower of γ should be as small as 

possible ( ~ Rm
effective: effective Moliere length)

Barrel: B Rin
2/ Rm

effective

Endcap: B Z2/ Rm
effective

Rin : Inner radius of Barrel ECAL
Z :   Z position of EC ECAL front face

(Actually, it is not so simple. Even with B=0, photon energy 
inside a certain distance from a charged track scales as 
~Rin

2)

S. Komamiya
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Merits of Huge Detector 
Good Jet Energy (Particle) Flow Measurement

Good charged track separation in a jet at the inner surface of the calorimeter 
large BR2

Pattern recognition is easier
large n with thin material,   small number of low momentum curling tracks

Good momentum resolution for charged particles
large BR2 √ｎ

Good dE/dx measurement for charged particles 
large ｎ

Smaller relative volume of the dead space
small ΔV/V for constant ΔV ∝ n

Two track separation, Larger efficiency for Ks and Λ (any long lived) 
large BR2 , larger R

S. Komamiya
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Comparison of Detector Models
LD = Minimally modified one

SD TESLA LD
Solenoid B(T) 5 4 3

Rin(m) 2.48 3.0 3.75
L(m) 5.8 9.2 8.4
Est(GJ) 1.4 2.3 1.2

Tracker Rmin (m) 0.2 0.36 0.40
Rmax(m) 1.25 1.62 2.05
σ(µm) 7 150 150
Nsample 5 200 220
δpt/pt2 3.9e-5 1.5e-4 1.1e-4

S. Komamiya
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Comparison of Detector ModelsSD TESLA LD

ECAL Rin(m) 1.27 1.68 2.1

pt
min (GeV/c) 1.9 2.0 1.9

BRin
2 8.1 11.3 13.2

Type W/Si W/Si W/Sci

Rm(mm) 18 24.4 16.2

BRin
2/Rm 448 462 817

Z 1.72 2.83 2.8

BZ2/Rm 822 1311 1452

X0 21 24 27

Total λ 5.5 5.2 6.0

t (m) 1.18 1.3 1.4

S. Komamiya



51

S. Komamiya

• The LC detector optimized for “Energy Flow 
Algorithm” is realized with a “Huge/Truly large 
detector”

• There are a lot of space for improvements/challenges.
A global efforts are needed and we are looking for equal 
footing partners in the world. 

• The smaller detectors are not always inexpensive.

The key is Calorimeter
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GWW : Note by using b-tagging to 
separate, the low mass tail of the Z 

from semileptonic b’s can be 
suppressed too.
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Intrinsic W, Z width only 
(perfect resolution) 60%√Ejet
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Scint. Thickness – critical parameter 
for small RM

1 GeV photon, 75 
layers, 1.4 mm W

Curves are for 2.5, 5,10,20,∞ pe/mip/mm

Developments in tile-HCAL 
R&D, suggest light yields 
of 5 pe/mip/mm achievable 
with Silicon PMs – up to 20 
pe/mip/mm with high QE 
devices.

Light-yield does not look 
to be overly critical. Can 
probably live with straight 
fibers.
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