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 Introduction
e Design overview

« Key choices
— What E-flow performance do fEEE=ssEn
we want/need ?
— Tracker
— B-field (for vertexing)
— Calorimetry
— Magnet design

This talk is NOT a detailed intro to a
particular detector design /. H events



Sociology

Many of us think we know how (not) to do things from
our previous experiments.

— Can yield valuable insight. (eg. e*e at Vs=210 GeV, SLC)

— Can lead to the right answer for the wrong reason (this 1s OK)

— Can lead to the wrong approach because of blinkered thinking

=> Essential to bounce 1deas around and not accept
conventional wisdom

It is interesting to see how the PETRA detectors did or did not
lead to the more successful LEP experiments !
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A really Large Detector: L3

Pt o Tl
it

This 1s not the kind of large detector that 1s being considered !



Reterences to previous work

« TESLA TDR

* Snowmass
ResourceBook (LD)

« GLC
« TESLA CDR
o JLC

Also new 1nitiative, discussed
by S. Komamiya, similar to
LDmar01, emphasizing large R
calorimetry

7450

4450

2750

Global effort can pool resources, take
advantage of existing work, and with
a cooperative spirit, advance this type
of detector design towards the real
world of physics opportunity



Detector design overview

Detector design should be able to do excellent physics in a cost
effective way.
— both the physics we expect, and the new unexpected world that awaits

Very good vertexing and momentum measurements are
desirable.

c,=5 @ 10/(pPsin®20) pm o(1/pT) =7 x10 GeV"!
Reasonably good electromagnetic energy measurement.

o./E ~ 10%/y E (GeV) ® 1%
The physics demands hermeticity and the physics reach will be
significantly greater with state-of-the art energy flow
— Close to 4n steradians. ~ 20
— Bubble chamber like track reconstruction. GEjet/Ejet 30 A)/[Ejet (GeV)
— An integrated detector design.
— Calorimetry designed for resolving individual particles.



What 1s E-flow ?

See Henri Videau’s talk at Paris LCWS for a thorough introduction

Particle-by-particle event

reconstruction v 1 r & A
= -~
J © J J ©
€ v ut T ete K, etc.

HCAL

ECAL




Di-jet mass distribution vs E.
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No kinematic fits, just Average di-jet mass
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it TESOlULION

W W- 1
o

20% __,
C30%

—,

=

- 40%

direct measurement

Comparing e'e- >WW
and

A | ete —ZZ at Vs=300 GeV
7070
(hadronic decays only,
assume WW:Z7Z =1:1

for 1llustration)
Reality = 7:1!

] G(Ej et) -
i xx%\E,(GeV)

P

85 90 95 100 105

- 30%\/Ejet is a good target.
Physics (I',=2 GeV) may

v
(GeV) demand even more !
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Physics benchmarks — do not oversell !

*  Chosen benchmarks can become Example: TESLA TDR analysis
scientifically questionable. retains large evWZ contamination
— Eg. We may really not care all that
g g ound) My crystal ball predicts that at
« If we plan to take these seriously - Durham :
for detector design decisions, we S—e{ff%;gy SAGOGEY (B0 51 15 AFple) Low angle coverage

~ for electron ESSENTIAL

really should be using all of the
detector’s capabilities, and doing
the ultimate analysis ~ impossible !

— Applicable kinematic fits (see
previous slide !!)

— Non-hadronic decays of W and Z
— b and c-tagging

MMZ2<500 and Electron Energy >5GeV

MMZ2<250 and Electron Energy >2.5GeV

process e+ e- — ef v W* Z (blue)
almost disappear, while leaving
processes (1) and (2) unchanged

— electron vetoes

Mass J3 J4  (GeV)

— Including backgrounds © - e What about the
— Including systematics . SR leptonic decays
— Etc, etc. ST S (GWW)?
« Let’s use some common sense too ! Mass J1 2 (GeV)
ECFA workshor Durham J.C. BRIENT 4

Jean-Claude shows it can be removed and claims the best way
to do the analysis iIs to also use b-tagging (see extra slides)



The (1n)famous plot — now as a lego plot
from my e'¢e — WW, ZZ toy study
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But, clearly 30% 1s far from the point of
diminishing returns !
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ouldn’t 20% be really something !

20%VE;,

30%VE;,




. T.-Maruyama
VXD 3

VXD 2 —

A I - S
SRR e B g 1
(R i i Bl e ':Mﬁjk*:

Z (cm)
The pairs background
and

the VXD inner radius

A naive approach

Coil: B’R’L

<C

AN

2 (Reoil !,

%
/

GWW)

/

— minimum B

Particle flow:

BR? > c,

R

ECAL !

(R. Frey, LCWS2004)
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Momentum resolution constraints on

15

tracker

Long standing performance driver

assumed to be recoil mass to dimuon in Z

H.

LDMar01 detector has A(1/p;) =3 x107
Plots include beam constraint
Definitely good enough for Warm.

Should be reverified again if the decision

1s Cold (less beamstrahlung)

LD assumes point resolution of 120 um
in TPC. R&D suggests 50-70 um
achievable.

TPC Tracker does not need to be
“truly huge” to meet the momentum
resolution specs.

-8 Higgs Mass Distributions
LD-350-140-50000
Mumber of Events / 1 GeV o Z0 recoil mass - 0.25*pt
2,600 T O Z0 recoil mass - 0.5*pt
® Z0 recoil mass - 1.0*pt
2,400 T ® ZO recoil mass - 2.0*pt
2,200 T Z0 recoil mass - 4.0%pt
2,000 T
1,800 1+ oo
Haijun Yang,
Keith Ril
1,200 T | el 1 es
1,000 + ?
L Vs=350 GeV
600 T \
400 1 : i‘-\\.
]
2007 . ity ! won
{2 b2 e oy e sy t } t |
120 130 140 150 160 170

Z0 Recoil Mass (GeV)

e FASTMC: ZH — p*u~ X(vy), My = 140 GeV, LDMARO1
e Higgs mass distributions. Track momentum resolutions

Al %,’J are re-scaled by factor fac(0.25, 0.5, 1.0, 2.0, 4.0).



Tracking Performance

® preliminary results for tracking performance: USlIlg real eXpt°
® look at dd events ( ALEPH+DELPHI+OP AL)

el A Y P & T s s s A A A n reconstruction software
il TESLA/BRAHMS 2.01 § | TESLA/BRAHMS 2.0}
% - TPC track reconstnuction efficiency TE | gldbal track reconstmction efficiency
£ g T e o s g o z ! ;ﬁﬂ*ﬂ‘ﬁ"'++**‘§*'*+“+'“++*w*++i Fake rate: 0.4%
g ] ‘c;: : - CCD only: 97.4% / 10%
E 08 2 08 APS only: 92.4% /0.7%
: ] g split tracks 3%
% G i
£ 0 g iy £ 05 sl bl
- average: 97.9% 15 nenge) 984% | i
E | IR Will do even
o ' better
02 02l
' ' ' Simulation includes full background,
. n | including backsplashes from the outer

D 01 02 03 04 05 06 07 08 09 1 0 oo 0 02 04 0s 0s 1 detectors
cm(@) COG(@) .

B excellent reconstruction efficiencies even in complicated environment

Ties Behnke: The TESL A tracking system



Remaining track overlap when taking advantage of Z separation

(Same event, same pad response )

Detailed studies of high level TPC
tracking perfermance using CLEO

The z separation is often track'reconstruction
too small to provide track separation.

crossing tracks inr-f,  and
z-separation =1 mm .

But, track reconstruction can be efficient for
very close tracks by using information from
regions where the tracks are isolated. This is
an advantage of the pat. rec. used in this study. Active cone: Z=[r* (-6/40)] +/- 4.7 cm

LE ‘ D. Peterson, “TPC Detector Response Simulation and Track Reconstruction™, Paris, 22-April-2004
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Tracker technology choice

For, BR,....>> 7.5 T m? , proponents are confident that a TPC can deliver the
momentum performance (in combination with VTX)

True 3-D imaging tracker with > 10° volume pixels
Pattern recognition very robust wrt occupancy

Provides modest dE/dx (4-5%) for “free”. Will make low p electron-ID superb. (but e-ID
probably already superb)

Robust VO-finding
Can increase safety margin re backgrounds with gas choices, R, (see M. Ronan talk)
Long-standing strong international R&D program

While a solid-state detector could also deliver the high-p; momentum performance,
such a device is challenged by

track reconstruction robustness
material budget
Z-segmentation
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Vertexing constraints ?

need something like: c,=5 @ 10/(pPsin®?0) um
Driven by R /R, Driven by R, ,
(magnification factor) material
Radius [cm] ’é\ 1 . R(mm) tsl(um)
1.55 2.7 3.8 4.9 6.0 = II '._ -
é 600 ¢ ~ ¥ .'.
o © et 5 %‘ "\ \m,,
-l o sme | 3 s (L SugJ&D— o
L o 1. o = -
- TESLATDR | § * A i
200 = ~ n - e T o e —— — MyE
100 . E_ Ll = '5':'"F:
e | 7, ==
VTX-Layer g c = thk
May need to compromise a g
little if B-field is lowered, but is [ — s v m o+ m v
£ Momentum (GeV/c)

superb charm-tagging really so
paramount ?
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How to do E-flow well ?

* 1) Reconstruct charged tracks robustly, with high
efficiency and reasonable p resolution.

— Performance = f (B Ry,,c1er”s Nipits» Opoins PATREC)

racker °
e 2) Measure photons in ECAL. Avoid double counting

of charged tracks in ECAL. Mainly charged-
hadron/photon separation.

— Performance = f (B Ry, %2, ECAL properties, algorithms)

— For the same R,, and X,,, the higher B Ry, > wins.

— Tungsten and a compact readout 1s the key to keeping R, low
e 3) Measure neutral hadron energy in ECAL and HCAL

avolding contamination from charged particles,
photons.

— Performance = f (above factors, granularity, etc)



Intrinsic resolution/ o

2.
Jj€

* (Generic intrinsic resolution
assumptions lead to jet energy
resolutions ~1 8%\/Ejet (see backup

slides)
+ So, if = 30%VE,,, is the goal, then
c needs to be < 24%\/Ejet.

2 3 . 3
Intrinsic

2

TO confusion

o G t:G

confusion

What are the components of ¢

confusion °

confusion

— Detector
concept
should focus
on
resolvability
of particles
within jets.

— Large
Recars

— Large

RHCAL
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What’s most important ?

Design studies must answer this systematically. Here’s my take.

* 1) Reconstruct charged tracks robustly, with high
efficiency and correct track parameters (in z too!).

— Obviously a pre-requisite

e 2) Measure photons in ECAL. Avoid double counting
of charged tracks in ECAL. Mainly charged-
hadron/photon separation.

— Seems to be the heart of the problem

* 3) Measure neutral hadron energy in ECAL and HCAL
avolding contamination from charged particles,
photons.

— At some level, doing 1 and 2 well, will take care of 3 7?7

The calorimetry is key !

22
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The LEP Detectors — BRp,;? scaling

. .
Forwurd Clunber & Bure] buon Chunbers (1 [ ] V 1S l I al are a)
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24

e /TN \ \ ~ The LC detector should be
¢ . / Senotl and y

& o @ aiming for BR; 2> 10 Tm?

2.6 Tm* (B=0.435T) NB. CMS has only 8 Tm?
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Starting points

JLC report 1992. Scale up OPAL?

TESLA CDR circa 1996. Led by Ron Settles : scale up
ALEPH. B=3T.
— TDR. Iterated to 4T (because CMS think it’s possible)

North American “Large Detector”. Build a detector
with a TPC tracker (Mike Ronan).

This talk starts from the perception/prejudice that
indeed “‘the calorimetry is key”.
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Why 1s the calorimetry key ?

Calorimetry technology choices dictate Ry,
EM calorimeters will be expensive

Costs of particular EM calorimeters with the same
compactness (Ry, and X)) scale with Ry, ?

The arguably best solution, “S1-W partout”, inevitably
has a high cost per unit volume. The TESLA TDR Si-
W ECAL may cost as much as 250 MS$ (Rg-x;= 1.68
m, B Rg-,>=11.3 Tm?).

Alternative solutions eg. W-Scintillator or S1-W-
Scintillator hybrid may give competitive performance
more cost effectively. (the key 1s the W and the
compactness)
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From S. Komamiya

EM Calorimeters

* Areca of EM CAL
(Barrel + Endcap)

— SD: ~40 m? / layer

— TESLA: ~80 m? / layer
— LD: ~ 100 m? / layer

— (JLC: ~130 m? / layer)

GWW : BRy ., 2=8, 11.3, 12.0, 13.2 Tm?



L
uncn Brown Komoelerve FIAFT.E20

A Some opening ga
p g g i

 “Physics can make do with st

BR,x 2 < 10 Tm2, Si-W is !
cost effective ” I

* “Let’s do S1-W?”

 How can you build it for
just xxx/2 M$ ?

— Reduce Rga;

— And/or, worsen o/E (less
layers)

ossible consequences

sics needs BRg, 2> 10 Tm?
andsS1-W 1s probably not the most
c"?st effective solution”

“('.tan’t afford nominal S1-W”’

— Develop ECAL design with lower cost
| per unit volume and competitive R,,, X,

4 Increase R arnvestigate HCAL
~loutside coil

— Not enough Rtracker for ;
gaseous tracker. -

— Silicon tracker
« Add material. ]
» Lose PATREC robustness’
* Lose dE/dx
Joiodat s nSWer: ( “-.::--':":'-.'__ o
XX/ iy meed zzz

™

n
proposal A”

o -
- ok

4 1A

i F R i
xxx/2IMS?

ots of space for a gaseous tracker

an you build 1t for just

e n “U_ : “We really need yyy M$ to
Ak

- meetour revised upward physics specs.
a littlee
PO OSal B
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My hermeticity pecking order

In most physics analyses with missing energy

the first priority is identifying that there is
genuine missing transverse momentum, how \/
well you measure X'p - Is another issue.

0
Electrons '

Photons

Multi-particle Jet

Isolated charged particles

Muons

Occupancy — eg. Background, cosmics etc ?
Taus

Last and by far least important: K% , neutron



Cost Estimates

e Published cost estimates for TESLA, SD
and LD are in TESLA TDR, Snowmass

* (G1ven the uncertainties, extensive
discussion 1s inappropriate.

— Major cost for SD, LD : magnet.
— Major cost for TESLA : S1-W ECAL.

30
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net

1000 e e m e = ;
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Figure 1. Superconducting Magnet Costs Versus Magnet Stored Energy.
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Figure 2. Superconducting Magnet Cost Versus Field-Magnetic Volume Product.

Green, Byrns, St. Lorant, 1992

prices are scary !

Seems hard to envisage
something much more

aggressive than CMS 1n
stored energy (2.5 GJ).

PDG quotes,
cost ~ U%% but based on

old, scarce unreferenced
data (in 19919)

Suggests we should be
careful about assuming
less than linear scaling of

cost vs stored energy cf
CMS
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R&D on magnet design ??

* The choices regarding the solenoid geometry
and engineering design have a major impact
on the detector design and cost.

« HCAL outside solenoid option — emphasize
“transparency” in X,, A ( ~ B? R for X))

— Could a detector internal to the cryostat be
remotely feasible with a multi-conductor
approach ? (liquid He ! —not liquid N,.)

* Shouldn’t there be more effort in the
direction of magnet R&D ?

32
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HCAL outside coil ?

Transparency of the ATLAS . 55+

solenoid and other solenoid Ry.,=2.0m,
SRS SR S IS S S T S maybe 6 X0 1S
A feasible

Makida  * ] How does E-flow

2 I (KEK) A performance
E S b SC-PT change as HCAL is

P DO, 7 * Us 1 .
SR V520 N W e placed outside a
05 [l efiig ATLAD ] “thin” solenoid ?

e T N.B. Ryyear
B2oR([Tes?am] increases too !




T.-Maruyama
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The pairs background
and

the VXD inner radius

A naive approach

Coil: B’R’L

<(:2

AN
(Rcoil !’

/

GWW)

/

Particle flow:

— minimum B

BR? > Cq Recad !

(R. Frey, LCWS2004)
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Basic assumptions/dependencies

Stored energy in coil: U=0.5(mt/p)B?R_;*L.;;
Assume 2.5 GJ (CMS) 1s a practical technical and fiscal upper
limit.
Energy flow performance depends on BRg,;? (Rg-o; = inner
radius of ECAL)
Detector aspect ratio. (relates R, to L_,;))-

—  Take cos0 = 0.86 by default. Study 0.80, 0.71 too.

—  (needs to be revised, I used the ECAL aspect ratio, not the coil in slides)

R ot = Rgcar T AR, where AR accounts for space for calorimetry
internal to %ﬁe mean coil radius and coil cryostat, inner windings
etc.

Two choices.
— 1) : AR=1.65 m (CMS-like, substantial room for HCAL inside coil)
1) : AR=0.8 m (ALEPH-like, ECAL only inside coil).
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1 Red lines :
| U<25Gd,
c0s0=0.86

B (T)

Blue lines :
| U<25G,
c0s0=0.71

{ Improving

.| E-tflow
| performance




Cos0=0.86. U < 2.5 GJ, HCAL inside coil (AR=1.65m)

10 _'IIII.IIII!I[I'I!IIII.IIII!II]I.IIII.III'I!IIII!IIII_

B (T)
Red line : U=2.5 GJ
Heavy cyan line :

10 T m?2 contour.

Light cyan line :

15 T m? contour.

Purple line: 1 __

minimum B-field ST TR T OO OO OO T T
needed ? 05 075 1 125 1.5 175 2 225 25 275 3




CMS magnet (2.5 GJ) 1S challengmg !

10

B(T)

What about U 7 bt X\ b ]
<1.25GJ? 6:

N o
0.5 0.75 1 ].ﬁ 1.5 IS5 2 2.25 2.5 2758 3
rcar (M)



ECAL geometry

]
=
-

I~
oL
=

I~
&h
=]

[
=
=]

e

ECAL barrel half-length (¢cm)

[0
[ o]
=]

See also J-C Brient talk at LCWS

cosO=0.86 0.80 0.

04
71

200 |

180 [/ N ot -
Silicon area for 40 160 | N/ N
layers, 20 cm depth. 1/ N/ . N_ T U e -

Barrel cylinder + 2 20 |

endcap disks

e

100 X

0 m?

000 m?

ECAL internal radius (c¢m)

How much should we fight for superb E-flow in the endcap ?

100 120 140 160 180 200 220 240 260 280 300



Concluding remarks

The detector design concept with large volume gaseous tracking
has broad support in each region.

— It appears to be a detector concept that is feasible.

— Needs R&D support in North America.

— TPC tracking is a natural front-runner for such a detector.
— The calorimetry solution is key to the physics and costing.

A concerted inter-regional effort, with open participation,
focussed on the main design issues, can explore the design

parameters, and deliver a design concept worthy of the LC
accelerator

Scientific cross-checks DEMAND 2 viable detectors

— SiD 1s a development which will foster a complementary detector design.

— Is it viable ?
— Urge cooperation on issues of common interest (eg. magnet, calorimetry)
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Backup slides
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Dependence of E-jet resolution on
EM energy resolution (stochastic

emcal sfochastic
EeTIm )

0.3
0.25
02 - =
— % *— —e— hottom i
- —B—charm T
| A down b
mE 0.15 X—quarks
E T e— e —%—strange
= —e—up
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0.1 / ——gluon

——
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Energy resolution for sampling W

r cent)
[ 2]
n

[
-
n

[
—}

_.

N —

7] 7
\ \

Energy resolution at 1 GeV (pe
>
|

s | Photons

178 i

—42 SI|IC®I’1 samples : 100 nm rcnge cu-t---'—f

. 4 s mttilctor samp IF?QS_

75 scmtlilotor somplmgs 1

GEANT4 Study | -

-t wO X0 of purew

GWW

Also plotted, CALICE, Asian, , PBWO,

22.5311:44%5

Active material thickness (mm)

calorimeters

42 layers=2.5mm W @Q
56 layers=1.75mm W ©
75 layers=14mmW O
135 layers =0.78 mm W O

Cost 1ssues:

W cost = independent of
thickness if rolled ?

S1 and scintillator scale as
area, and can be more
expensive 1f thinner.



Compactness

Tungsten-Scintillator EM Calorimeter

Moliere Radius (mm)

N Lowercurves ffff nogp ffffff
Also plotted A51an “CA (Pb)

IIIIIIIIIIIIIIIIIIIIIIIIIIII iIIIIiIIIIIIIII7
05 075 1 1.25 1.5 175 2 225 25 275 3

Scintillator Thickness (mm)

eed to minimise gaps, reduce space needed for
fiber routing, by sharing fiber routing gaps
among layers

Assume 25% of scintillator
thickness used for readout
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S. Komamiya

d=0.15BR4/p,




. . . S. Komamiya
Figure of merit : Calorimeter

2 — 2 2 2 2 2
U Cyje’[ Och T Gy ™ Ouh T G confusion + Ohreashold

— Separation of charged particles and y/nh 1s important (See
H.Videau’s talk at LCWS2004)

— Charged particles should be spread out by B field

— Lateral size of EM shower of y should be as small as
possible ( ~ R_eftective: effective Moliere length)

Barretm B R 7/ R et
EndcaPpT B Z77 R oo

R, : Inner radius of Barrel ECAL
Z : Z position of EC ECAL front face

(Actually, 1t 1s not so simple. Even with B=0, photon energy
inside a certain distance from a charged track scales as
NRinz)
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Good charged track separation in a jet at the inner surface of the calorimeter
large BR?

large n with thin material, small number of low momentum curling tracks

large BR2{ n
S. Komamiya

large n

small AV/V for constant AV oc n

large BR2, larger R
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Comparison of Detector Models
LD = Minimally modified one

SD TESLA| LD
Solenoid | B(T) 5 4 3
Rin(m) |2.48 3.0 3.75
L(m) 5.8 9.2 8.4
E(G)) |14 2.3 1.2
Tracker | R;;,(m) |(.2 0.36 0.40
Roax(m) | 1.25 1.62 2.05
o(um) |7 150 150
Noample |5 200 220
opt/pt> |3.9e-5 |1.5e-4 |1.1e-4

S. Komamiya



S. Komamiya

amnarican nf Natactar NMan
C SD TESLA LD de 1 S
ECAL |R, (m) 1.27 1.68 2.1
p™" (Gevie)y | 1.9 2.0 1.9
BR, 2 8.1 11.3 13.2
Type W/Si W/Si W/Sci
R_(mm) |18 24.4 16.2
BR, /R | 448 462 817
Z 1.72 2.83 2.8
BZ%/R 822 1311 1452
X, 21 24 27
Total A 5.5 5.2 6.0
t (m) 1.18 1.3 1.4
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S. Komamiya

* The LC detector optimized for “Energy Flow
Algorithm” 1s realized with a “Huge/Truly large
detector”

* There are a lot of space for improvements/challenges.

A global efforts are needed and we are looking for equal
footing partners in the world.

* The smaller detectors are not always inexpensive.

The key is Calorimeter
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Studies of performance — A. Chou (SLAC)

(comparing extremes 1n resolution/material)

Charm jet tagging, ZH(120)@500 GeV | |BR(H->cc) sensitivity, ZH(120)@500 GeV |
2 ] [ . ]
o [ ir : e | _5
3 7 (——10um, 1.0% X - E'.I . |——10 um, 1.0% X 1
e [ = 5um,.12%X i 535:_ e 5 um, .12% X '
W 8- . 1um,.03%X i = [ | . 1um,.03%X

H J N -

i ; N30 -

5 = 0

E A + T

E 2 | o |

4 i 25/

z , 2 |

3 |

. %20_— =

; | T

2 ! [

i oA el

E ot W 15 |
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4/5/02— FNAL LC Workshop K. Riles (U. Michigan) — Charged Particle Tracking Issues 24



SeleCT = 2 b'jeTS A | pa 5] | J-;.B'RIE_NT

(GeV)

S(22)

~12.2
B(WZ,WW)

Mass J3 J4

60

60 70 80 90 100

Mass J1J2 (GeV)

ECFA workshor Durham J.C. BRIENT



Select < 2 b-jeTS . ' J-C. BRIENT

Before di-jet mass cut
S(WW,ZZ)
~ 100

B(W2) “ e 2y

GWW : Note by using b-tagging to
separate, the low mass tail of the Z -,
from semileptonic b’s can be
suppressed too.

After cut 60

WW region: /7 region:
Contains 892 % of the WW and Contains 71 % of the ZZ
S(WW) S(Z7)
~ 18.6 ~24
B(ZZ, W/Z) B(WW, W/

FCFA workshop Durham J.C. BRIENT
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(perfect resolution)
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Scint. Thickness — critical parameter
for small R,,

.............................

1 GeV photon, 75
layers, 14 mm W

-
N

Developments 1n tile-HCAL
R&D, suggest light yields
of 5 pe/mip/mm achievable
with Silicon PMs — up to 20

_—
faa

—
(]

Energy resolution (per cent)

pe/mip/mm with high QE "
devices.
Light-yield does not look
to be overly critical. Can ; |
probably live with straight e
ﬁbers Scintillator plate thickness (mm)

Curves are for 2.5, 5,10,20,00 pe/mip/mm
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