Towards Jet Specific Energy Resolution:
Investigating n° Kinematic Fits

EM calorimeters under 5 Ge mm
consideration for ILC have pixels
unprecedented potential for "
photon position resolution.

Can this be used to measure m°
energies very well and by

extension hadronic jets ? 1. Motivation: Jet Specific Energy
Resolution & Physics

Also see talks 2005-2007 . . .

on 70 KF basics and initial 2. 7Y kinematic fitting

forays into applying to .

hadronic events. 3. Improvements in ¥ energy

(latest: ALCPGO7 for resolution

more details.)

4. Applying to hadronic jets
Graham W. Wilson and Brian van Doren



Advanced Particle Flow

Ejet - Ech T Ey T ENH

Charged Particle Energy vs Photonic Energy

E, (GeV)
How does PFA depend on (f,, f,) ?

On (n,, n,)? etc.

Develop jet specific energy
resolution formalism.

Take advantage of knowledge of jet
energy errors jet per jet.

Non-Gaussian resolution function
1s not a cardinal sin —itis a
potentially exploitable feature.

Will eventually need detailed
understanding at individual event
level inside PF algorithms.

As a first step, take advantage of
error knowledge on the fitted
photon component (under the 7t
mass hypothesis).

May be most useful in the near-term
in the “no-confusion” limit.



Example (New) Physics Analysis

Possible 1 TeV benchmark ?
Single W study at Vs = 1TeV

W mass fit from hadronic system

W—aqq

(jets are not
SO energetic)
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. Potentially very useful ! (Especially, if the
=> Further E;, resolution improvement  ya5|ly challenging requirements on jet
and knowledge very desirable energy scale and calibration can be met !)



Absolute Jet Energy Scale

* One self-contained approach for PFA could be
bottom-up using known particle masses.
* Momentum scale (J/y)
= Photon scale (7*)
= K9 scale (¢)
" n scale (2)

= nbar scale ()

* Probably unrealistic as the only method.
= But may point to the need for substantial statistics at the Z.



nY Kinematic Fitting



nV’s and Particle Flow

 Particle Flow

— Charged particles == TRACKER => 62%

— Photons => ECAL => 28%
— Neutral hadrons => HCAL => 10%
 Photons

— Prompt Photons (can assume vtx = (0,0,0))
« ¥ (About 95% of the photon energy content at the Z)
e 1, M etc.
« Lone photons (eg. ® — 1)

— Non-prompt Photons
¢ K% — m0 70
e A—>1n'n

* So, as you know, most photons do come from prompt 7°’s, we do

know the © mass, and they interact in well understood ways !

« So, for correctly paired photons, n° mass constraint is reasonable, and we have
shown that the improvement in estimating E_, can be sizeable.



Detector Resolution

Both ILD and SiD envisage compact EM calorimeters
capable of very precise angular measurements readout
every X0 or so.

Examples:
S1-W
— (13 mm? cells at R=1.27 m (SiD)
— (25 mm? cells at R=1.85 m (ILD)
— (50 um x 50 um pixels — MAPS option)
Can 1dentify the photon conversion point in the ECAL

with resolution typical of the pixel size largely independent
of the photon energy.

Resolutions in the 0.5 mrad range per projection for 1 GeV
photons is at hand (assuming photon is prompt).



Documentation

Working on a paper documenting and extending the foundations of
earlier studies. Emphasis is on a generic detector for a wide range
of resolution assumptions. Mainly treating the single 7’ case using
smeared Monte Carlo.

Applying mass-constrained fits to the energy
reconstruction of di-photon resonances with high

granularity calorimeters

G. W. Wilson® and B. van Doren®

pku . edu

ABSTRACT: Mass-constrained fits to correctly matched pairs of photons are mvestigated and the

. . - . . - . . 0 e |
improvements in di-photon energy resolution are quantified for the ubiquitous 7 for a range of 7"

energies, center-of-mass decay angles, and assumptions on photon energy and angular resolution.



nY Kinematic Fitting |

* For simplicity, (old 3-variable studies) used the following
measured experimental quantities:

E, (Energy of photon 1)
E, (Energy of photon 2)
WV, (3-d opening angle of photons 1 and 2)

e Fit using
* 3 variables, X=(E,, E,, 2(1 - cosy,,) )

* a diagonal error matrix

(assumes individual y’s are completely resolved and measured independently)

" and the constraint equation

m* =2 E, E, (1 - cosy,,) =X X, X4



nY Kinematic Fitting 11

The new 6-variable study uses (E, 6, ¢) for each photon.

Still a diagonal error matrix.

Implementations:

— 3 variable: analytic Have been able to
— 3 variable: Blobel F77 fitter cross—check all

— 6 variable: Blobel F77 fitter four with identical
— 6 variable: MarlinKinFit (Brian) inputs.

6-variable advantages:

— More realistic angular resolution implementation

— Assess improvements in 1% direction



Energy Smearing and Detection
Threshold

GﬂUSSlan energy Smearlng 25000 Entries 200000

_ Mean 11.11

op/E = 0‘./ \/E 20000 RuS s
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Smearing the Photon Angular Resolution

Photons are assumed to be prompt. So angular resolution is equivalent to position
resolution in the ECAL for this application

Photons are smeared independently in “x”" and “y”" by Gaussians
with width of eg. o = 0.5mrad independent of energy

Angular deviation of each photon (smear by 0.5mrad in each transverse direction)

Pi0s per bin

Rayleigh |
distribution
with

| b“m _3

AL i
ol N s

Di-photon opening angle residual (mrad)

1.2 1.4 1.6 1.8 2

Photon angular deviation (mrad) Err ( W ]2) — x/2 o

(previous thinking:
Err(y,;,) =20 /)




Example Fit

4 GeV 7, 16%/VE, 0.5mr (default assumptions unless stated otherwise)

Measured

-0.504
-0.504
-0.504

0.504
-0.504
-0.504

(Note: the 3 and 6-variable fits are equivalent in terms of
energy variables)



Pull_E(i)

Pull_Ei

Pull_E{(j)

Entries 96834
Mean 0.01117

RMS 0.996
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RMS 0.996

1 Distributions

Pull_Theta(i)

Pull_theta_i

3000

Entries SE834
Mean -0.001423
RME 0.9961

Pull_theta_|

3000

Entries BEA34
Mean 0.0009663
RME 0.9861

Pull_Phi(i)

Pull_phi i

Entries 96834
Mean -0.000957

RMS 0.9961

Pull_phi_j

Entries BEA34
Mean 0.0009248
RME 0.9861




Fit Probability

Entries 96835
Mean 0.5027

RMS 0.289
x2/ndf  114.6/99
Prob 0.1358
p0 967.2 + 3.1

0.8 1
Fit Probability




nY Angle Improvements

Entries 96834 .
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Measured Angular Residual (mrad)

Modest improvements at this energy, but note that this feeds
through combinatorically with all other particle pairs in

hadronic mass estimates.
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7% per bin

4 GeV 1 (cosB* =0.25)
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Fitted n¥ Energy Resolution

Use rms of fitted 7’ energy distribution.

7's are generated at fixed cos 0* values

n” Kinematic Fit Study

4 GeV i
16%/sqri(E) Energy Resolution
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Fitted n¥ Energy Resolution

Use rms of fitted 7’ energy distribution.

7's are generated at fixed cos 0* values

° Kinematic Fit Study
I I I I

8 GeV ’
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Fitted ° Energy Bias

i’ Kinematic Fit Study

4 GeV r°

16%/sgrt(E) Energy Resolution
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Weighted Mean

« We can also try and use the ©t° specific energy
resolution.

* As an exercise, look at weighting by the fitted
energy error of each ¥ in a mono-energetic
sample with the usual weight factor of ¢,

 In this case, we can define an effective

resolution per ©t¥, 6. = \/(1/ < Gi'2>), (and also scale
this stochastically too).
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Averaging over all

7° Kinematic Fit Study
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Quite an improvement on the apparent statistical error on this “observable”




nY specific energy resolution

TN
@
®
<
4
=]

—
>
O
S
==
o
()
c
L
=
o
O
()
E
L

Entry Number

Use fitted error on each 7’ to form weighted average for
an ensemble of mono-energetic n's.



nY specific energy resolution

Large ensemble
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Weighted mean has a bias of around 0.25%

Chi**2/dof
small, but
not
acceptable.

Why ?



nY fit pathology

The fit always adjusts the
energies of both photons
upwards or downwards
according to the measured
mass deviation from m(7°).

0.9813 + 0.0023

4 GeV n°

n°s per bin

eeeeee
2/

Sometimes this can lead to a
“wrong” fit with small errors

ntries

0 5
Pi0 Energy Pull wrt Gen

-0.02411
1.035

0

0
0.683e+004
-0.4367
1528 /104

7% per bin
4

1.141e-251
3875+15.5
-0.005404 + 0.003393
0.9813 + 0.0023

-
¢zovigzocas

Example (p;, = 0.5%)

El (GeV) E2 (GeV)
G 28 1.2
M 25 2.0

F ] 9 ] 7 Pi0 Energy Pull wrt Gen



ZO

16%/VE, 0.5mr, perfect pairing
ErrorFitEvt/sqrt(TotalActualEVtE)

Entries 4994

M 0.09222
Calculate RMS 002199
error on the
sum of the
fitted 7/

energies and
scale
stochastically

0.1 015
ErrorFitEvt/sqrt(TotalActualEVLE)

Potential of energy resolution of around 9.2%/VE on average



Next Steps

* Finalize current studies and complete write-up.

« Implement on simulated single ©°’s
— Need appropriate clustering, calibrated ECAL and errors.
— Expect to put some emphasis on low energy photons.

— While the ILD ECAL 1s not over-designed for this application,
doing “real” simulation studies again will be an important

complement to this more conceptual work, and will enable studies
in the PFA framework.

— To get the full benefit — need some more segmented ECAL layers
(eg. MAPS or analog Si-strips). MAPS based ECAL layers are
well matched to this application !

» Re-visit (and write up) “matching problem’ — pairing up photons in
hadronic events.

— (O1d results 16%/NE — 12%/NE ) (9.4%)



Conclusions and Outlook

e Kinematic fitting works
— Detector designs should take advantage.

« Excellent angular resolution for photons can lead to
much improved resolution on EM component of
hadronic jets (and knowledge of the error).

e Measuring very well some jets (those without neutral
hadrons), and knowing the resolution, will be
advantageous in some physics analyses.



Backup Slhides



¥ mass resolution

» Can show that for 6./E = ¢,/VE that
Am/m = ¢, /N [(1-a2) E_o] @ 3.70 Ay,E o (B-a?)
where a = 3 cos0* = (E,-E,)/E_,

So the mass resolution has 2 terms :
1) depending on the EM energy resolution (c,)
i1) depending on the opening angle resolution (Ay,,)

The relative importance of each depends on (E_,, a)



pi0 mass resolution contributions

¥ mass
resolution
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Contribution to dm/m

Plots assume:
c, =0.16 (SiD)
Ay, =2 mrad

For these
detector
resolutions, 5
GeV 7’ mass
resolution
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Recent Improvements

* Blobel numerical fitter in DP 1n addition to analytic fit (both F77
for now)
— consistent

* Technical details
— cos0*=(1/") (E,—E,)/E o
— Error truncation for low energies : avoid —ve energies ...
— Using simulated error rather than measured error
— Now have perfect probability and pull distributions

* Error propagation after kinematic fit

— Demonstration that for each n in the event, we could not only improve the
n” energy resolution but would also know the error.



20 GeV
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Use single 7’ toy MC
with Gaussian smearing
for studies.
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These resolutions used
unless otherwise stated.

0.4 0.6

Blobel Fit probability

A rare thing: a really flat probability distribution !!!



Pull distributions
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Measured pi0 energy pull cf gen
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3. Results on 7 Energy
Resolution Improvement

For the Proof of Principle study there are:
Two relevant nt° kinematic parameters:

i) E (nV)

11) cosO* (cosine of CM decay angle)

And two relevant detector parameters:

1) Photon fractional energy resolution
(AE/E)

°°\N N\ ° 1 1 ° yaw \ AN
P PP S R I - . o



S GeV pil kinematic fit
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S GeV pi0 kinematic fit

D
Entries
Mean
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Pi0 energy error (measured)

D
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Pi0 energy error (fitted)

From now on, will
use the 7’ energy
error ratio
(fitted/measured) as
the estimator of the
improvement.

Call this the

improvement ratio.




ﬁ

pi0 kinematic fit
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Very strong dependence of fit error on cos0*.

Symmetric decay (cos0*=0) 1s best



pi0 kinematic fit

ID 1503
Entries 10000
Mean 0.5182
RMS 0.2690

5 GeV

Improvement by up
to a factor of 7 !

On average,

factor of 2.

=

0.6 0.8
pi0 energy error fitted/measured

503
Entries 10000
Mean 0.7712
RMS 0.7893E-01

20 GeV

Improves by a
factor of 1.3 on
average.

0.6 0.8
pi0 energy error fitted/measured




Dependence
on 71’ energy

Boomerangs: 16 per cent, 0.5mr

1.25 GeV
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Varying Energy Resolution 11,2131
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5 GeV Y

Average
Improvement
factor not highly
dependent on

energy resolution.

BUT the
maximum
possible
Improvements
increase as the
energy resolution
is degraded.

Improvement Ratio Dependence on Energy Resolution
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S GeV pil, 16%, vary ang resolution
1

2 mr

|
0.25

pi0 energy error ratio vs costhem

Angular
resolution very
important ...

|
0.25 0.

pi0 energy error ratio vs costhem




What’s going on ?

r (GeV

i
n

Error on 1°
energy 1s
independent

of pg;

5 GeV 1’ ¢,=16%, Ay,,=0.5mr

Fitted pi0 energy erro
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Hard edges
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EpiO(fitted) - Epi0(measured) (GeV)

E_, changes most when pg, small.

(NB the constraint is correct, so low

ps, corresponds to s where typically
the energy has fluctuated T
substantially) .




Kinematic Fitting Summary

 Proof of principle of kinematic fit for rt*
reconstruction done.

— Kinematic fit infrastructure now a solid
foundation.

— Well understood errors on each .
* Potential for a factor of two improvement in

the energy resolution of the EM component
of hadronic jets.



4. Towards applying to hadronic
jets

* Detector response

* Characterize the multi-photon 1ssues in
/. — uu, dd, ss events.
— Define prompt photons as originating
within 10 cm of the origin

* (NB differs from standard ct < 10 cm
definition)



Angular Resolution Studies

gauss

5 GeV photon at 90°,
sidmay05 detector (4 mm i
pixels, R=1.27m)

Phi resolution of 0.9 mrad @
using cluster CoG. o NB. ¢

o residual
=> 0, resolution of 2 differs by

mrad 1s easily achievable 156 from 0
' B-field ?

for spatially resolved

photons.

NB. Previous study (see backup slide), shows that a factor of 5 improvement in
resolution is possible at fixed R using longitudinally weighted “track-fit”.



Cluster Mass for Photons

5 GeV photon

. Cluster corrected mass most energetic

gauss

Of course, photons
Mean :39 Me V Clur-lzt-z-r corrected mass most E-rnE-rgE-tlj:: actually have a

o= 7.5MelV

mass of zero.

The transverse
spread of the
shower leads to a
non-zero cluster
mass calculated
from each cell.

Cluster Mass (GeV)

Use to distinguish single photons from merged 7 0’s.

Performance depends on detector design (R, R,, B, cell-size, ...)



Z to uu, dd, ss at 91 GeV
T T BT = NB generator has
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Z to uu, dd, ss at 91 GeV
D 201] 900 LR IUIRN (LU R 7 FRLRL
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Photon Accounting
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Intrinsic prompt photon
combinatorial background in
m,, distribution assuming
perfect resolution, and
requiring E, > 1 GeV.

With decent resolution, the
combinatoric background looks
manageable:

0.09 combinations / 10
MeV/event (n°),

0.06 combinations/10
MeV/event (n).

Especially if one adopts
a strategy of finding the
most energetic and/or
symmetric DK ones
first.
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Next step: play with some algorithms



Position res

1 GeV photon, G4 study (GWW)
3000 L L L T L
Neglect layer 0 (albedo) 2500 |- MR N T
2000 - gcﬁs]falt 05 f5128,£9)i 7164 |
Mean -0.6561E-02 0.1535E-01

Using the first 12 layers with hitiet SR A CR: 1| WEMNCTS Sigm 1514t ousseo]

with E>180 keV, combine the 1000 | c=15mm —
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using a least-squares fit (errors § il <ot R B U - . '
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Plot

%29
http://heplx3.phsx.ku.edu/~graham/lcws05 slacconf gwwilson.pdf
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http://heplx3.phsx.ku.edu/~graham/lcws05_slacconf_gwwilson.pdf

v, T, n' rates measured at LEP

Experimental results JETSET | HERWIG
OPAL ALEPH [6] | DELPHI [9] 7.4

photon
Tp range (.003-1.000 0.018-0.450
N, in range 16.84 £+ (.86 .37 £ (.24
N, all x5 2097 £ 1.15
_._”

TR range (0.007-0.400 0.025-1.000 0.011-0.750 | 0.004-0.150
Ngo in range | 5.29 £ 0.63 4.80 £+ 0.32 7.1 £ 0.5 | 838 £ 0.67
Ny all g 9.55 £ 0.76 9.63 £+ 0.64 9.2 = 1.0 9.18 £ 0.3 L().2Y)
|

IE range 0.025-1.000 0.100-1.000 0.020-0.300
N, in range 0.79 £ 0.08 | 0.282 £ (.022 0.70 = 0.05
N, all 2y | 0.97 + 0.11 0.91 + 0.11
Ny x, > 0.1 | 0.344 £ 0.030 | 0.282 £ 0.022

i

Consistent with JETSET Some fraction s non-
tune where 92% of prompt, from K%, A decay

photons come from n"’s. 9.6 n° per event at Z pole
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