Towards Jet Specific Energy Resolution: Investigating  $\pi^0$  Kinematic Fits

EM calorimeters under consideration for ILC have unprecedented potential for photon position resolution.

Can this be used to measure  $\pi^0$ energies very well and by extension hadronic jets ?

Also see talks 2005-2007 on  $\pi^0$  KF basics and initial forays into applying to hadronic events.

(latest: ALCPG07 for more details.)



- 1. Motivation: Jet Specific Energy Resolution & Physics
- 2.  $\pi^0$  kinematic fitting
- 3. Improvements in  $\pi^0$  energy resolution

4. Applying to hadronic jets

Graham W. Wilson and Brian van Doren

## **Advanced Particle Flow**

$$E_{jet} = E_{ch} + E_{\gamma} + E_{NH}$$



 $E_{\gamma}(GeV)$ How does PFA depend on  $(f_{ch}, f_{\gamma})$ ? On  $(n_{ch}, n_{\gamma})$ ? etc. Develop *jet specific energy resolution* formalism.

Take advantage of knowledge of jet energy errors jet per jet.

Non-Gaussian resolution function is not a cardinal sin – it is a potentially exploitable feature.

Will eventually need detailed understanding at individual event level inside PF algorithms.

As a first step, take advantage of error knowledge on the fitted photon component (under the  $\pi^0$ mass hypothesis).

May be most useful in the near-term in the "no-confusion" limit.

## Example (New) Physics Analysis

#### Possible 1 TeV benchmark ?

Single W study at  $\sqrt{s} = 1$ TeV



=> Further E<sub>jet</sub> resolution improvement and knowledge very desirable



 $W \rightarrow q q$ (jets are not so energetic)

#### Is this useful for physics ? Example m<sub>w</sub>.



Potentially very useful ! (Especially, if the really challenging requirements on jet energy scale and calibration can be met !)

## Absolute Jet Energy Scale

- One self-contained approach for PFA could be bottom-up using known particle masses.
  - Momentum scale  $(J/\psi)$
  - Photon scale (π<sup>0</sup>)
  - $K_L^0$  scale ( $\phi$ )
  - n scale (Σ)
  - nbar scale (Σ)
- Probably unrealistic as the only method.
  - But may point to the need for substantial statistics at the Z.

## $\pi^0$ Kinematic Fitting

## $\pi^0$ 's and Particle Flow

- Particle Flow
  - Charged particles => TRACKER => 62%
  - Photons => ECAL => 28%
  - Neutral hadrons => HCAL =>10%
- Photons
  - Prompt Photons (can assume vtx = (0,0,0))
    - $\pi^0$  (About 95% of the photon energy content at the Z)
    - η, η' etc.
    - Lone photons (eg.  $\omega \to \pi^0 \gamma$ )
  - Non-prompt Photons
    - $K^0_S \rightarrow \pi^0 \pi^0$
    - $\Lambda \rightarrow \pi^0 n$
- So, as you know, most photons do come from prompt  $\pi^0$ 's, we do know the  $\pi^0$  mass, and they interact in well understood ways !
- So, for correctly paired photons,  $\pi^0$  mass constraint is reasonable, and we have shown that the improvement in estimating  $E_{\pi 0}$  can be sizeable.

## **Detector Resolution**

- Both ILD and SiD envisage compact EM calorimeters capable of very precise angular measurements readout every X0 or so.
- Examples:
- Si-W
  - $(13 \text{ mm}^2 \text{ cells at } R=1.27 \text{ m} \text{ (SiD)})$
  - $(25 \text{ mm}^2 \text{ cells at } R=1.85 \text{ m} (ILD))$
  - (50 µm x 50 µm pixels MAPS option)
- Can identify the photon conversion point in the ECAL with resolution typical of the pixel size largely independent of the photon energy.
- Resolutions in the 0.5 mrad range per projection for 1 GeV photons is at hand (assuming photon is prompt).

## Documentation

Working on a paper documenting and <u>extending</u> the foundations of earlier studies. Emphasis is on a generic detector for a wide range of resolution assumptions. Mainly treating the single  $\pi^0$  case using smeared Monte Carlo.

> Applying mass-constrained fits to the energy reconstruction of di-photon resonances with high granularity calorimeters

#### G. W. Wilson<sup>a\*</sup> and B. van Doren<sup>a</sup>

<sup>a</sup>Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA E-mail: gwwilson@ku.edu

ABSTRACT: Mass-constrained fits to correctly matched pairs of photons are investigated and the improvements in di-photon energy resolution are quantified for the ubiquitous  $\pi^0$  for a range of  $\pi^0$  energies, center-of-mass decay angles, and assumptions on photon energy and angular resolution.

## $\pi^0$ Kinematic Fitting I

- For simplicity, (old 3-variable studies) used the following measured experimental quantities:
  - $E_1 \ (\text{Energy of photon 1}) \\ E_2 \ (\text{Energy of photon 2}) \\ \psi_{12} \ (\text{3-d opening angle of photons 1 and 2})$
- Fit using
  - 3 variables,  $\mathbf{x} = (E_1, E_2, 2(1 \cos \psi_{12}))$
  - a diagonal error matrix

(assumes individual  $\gamma$ 's are completely resolved and measured independently)

• and the constraint equation  $m_{\pi^0}^2 = 2 E_1 E_2 (1 - \cos \psi_{12}) = x_1 x_2 x_3$ 

## $\pi^0$ Kinematic Fitting II

- The new 6-variable study uses  $(E, \theta, \phi)$  for each photon.
- Still a diagonal error matrix.
- Implementations:
  - 3 variable: analytic
  - 3 variable: Blobel F77 fitter
  - 6 variable: Blobel F77 fitter
  - 6 variable: MarlinKinFit (Brian)
- 6-variable advantages:
  - More realistic angular resolution implementation
  - Assess improvements in  $\pi^0$  direction

Have been able to cross-check all four with identical inputs.

# Energy Smearing and Detection Threshold

- Previously had used Gaussian energy smearing.
  - $-\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{\rm E}$
  - Non-negligible probability of –ve energy.
- Elected to smear the photon energies using a Compound Poisson distribution (reasonably physically motivated as a model of branching processes).
- Impose a minimum detection threshold at E (GeV) > 2  $\alpha^2$
- For  $\alpha = 0.16$ , Emin = 0.05 GeV



Compound Poisson counts (esmear4)

## Smearing the Photon Angular Resolution

Photons are assumed to be prompt. So angular resolution is equivalent to position resolution in the ECAL for this application

*Photons are smeared independently in "x" and "y" by Gaussians* with width of eg.  $\sigma = 0.5$  mrad independent of energy







 $Err(\psi_{12}) = \sqrt{2} \sigma$  (previous thinking:

 $Err(\psi_{12}) = 2 \sigma !)$ 

## Example Fit

### 4 GeV $\pi^0$ , 16%/ $\sqrt{E}$ , 0.5mr (default assumptions unless stated otherwise)

| Variable                    | Measured                            | 3-variable fit                      | 6-variable fit     | Pull   |
|-----------------------------|-------------------------------------|-------------------------------------|--------------------|--------|
| <i>E</i> <sub>1</sub>       | $2.468 \pm 0.253$                   | $2.385\pm0.192$                     | $2.385\pm0.192$    | -0.504 |
| $E_2$                       | $1.679 \pm 0.196$                   | $1.605\pm0.130$                     | $1.605\pm0.130$    | -0.504 |
| $2(1-\cos\psi_{12})$        | $(4.765 \pm 0.0985) \times 10^{-3}$ | $(4.759 \pm 0.0977) \times 10^{-3}$ |                    | -0.504 |
| $\theta_1 \text{ (mrad)}$   | $1608.36 \pm 0.50$                  |                                     | $1608.37 \pm 0.50$ | 0.504  |
| $\theta_2 \text{ (mrad)}$   | $1619.11 \pm 0.50$                  |                                     | $1619.10 \pm 0.50$ | -0.504 |
| $\phi_1 \text{ (mrad)}$     | $2196.86 \pm 0.50$                  |                                     | $2196.84 \pm 0.50$ | -0.504 |
| $\phi_2 \text{ (mrad)}$     | $2128.60 \pm 0.50$                  |                                     | $2128.62 \pm 0.50$ | 0.504  |
| $m_{\pi^0}$ (MeV)           | 140.5                               |                                     |                    |        |
| $\rho_{E_1E_2}$             |                                     | -0.9683                             | -0.9683            |        |
| $E_{\pi^0}$                 | $4.147 \pm 0.320$                   | $3.990\pm0.074$                     | $3.990\pm0.074$    |        |
| $\chi^2/v$                  |                                     | 0.2543/1                            |                    |        |
| <i>p</i> <sub>fit</sub> (%) |                                     | 61.4                                |                    |        |

(Note: the 3 and 6-variable fits are equivalent in terms of energy variables)

## **Pull Distributions**



## Fit Probability



## $\pi^0$ Angle Improvements



Modest improvements at this energy, but note that this feeds through combinatorically with all other particle pairs in hadronic mass estimates.

## 4 GeV $\pi^0$



## 4 GeV $\pi^0$ (cos $\theta^* = 0.25$ )



Use mean and RMS of this distribution in following plots for fixed values of cos  $\theta^*$ 

## Fitted $\pi^0$ Energy Resolution

Use rms of fitted  $\pi^0$  energy distribution.

 $\pi^0 s$  are generated at fixed  $\cos \theta^*$  values



## Fitted $\pi^0$ Energy Resolution

Use rms of fitted  $\pi^0$  energy distribution.

 $\pi^0 s$  are generated at fixed  $\cos \theta^*$  values



## Fitted $\pi^0$ Energy Bias



*Bias* < 0.3%

## Weighted Mean

- We can also try and use the  $\pi^0$  specific energy resolution.
- As an exercise, look at weighting by the fitted energy error of each  $\pi^0$  in a mono-energetic sample with the usual weight factor of  $\sigma_i^{-2}$
- In this case, we can define an effective resolution per  $\pi^0$ ,  $\sigma_* \equiv \sqrt{(1/\langle \sigma_i^{-2} \rangle)}$ , (and also scale this stochastically too).

## 4 GeV $\pi^0$



## Averaging over all $\cos\theta^*$



Quite an improvement on the apparent statistical error on this "observable"

## $\pi^0$ specific energy resolution



Use fitted error on each  $\pi^0$  to form weighted average for an ensemble of mono-energetic  $\pi^0 s$ .

## $\pi^0$ specific energy resolution

#### Large ensemble



Chi\*\*2/dof small, but not acceptable.

Why?

Weighted mean has a bias of around 0.25%

# $\pi^0$ fit pathology



The fit always adjusts the energies of both photons upwards or downwards according to the measured mass deviation from  $m(\pi^0)$ .

Sometimes this can lead to a "wrong" fit with small errors



## $Z^0$

### $16\%/\sqrt{E}$ , 0.5mr, perfect pairing

Calculate error on the sum of the fitted π<sup>0</sup> energies and scale stochastically



Potential of energy resolution of around 9.2%/VE on average

## Next Steps

- Finalize current studies and complete write-up.
- Implement on simulated single  $\pi^0$ 's
  - Need appropriate clustering, calibrated ECAL and errors.
  - Expect to put some emphasis on low energy photons.
  - While the ILD ECAL is not over-designed for this application, doing "real" simulation studies again will be an important complement to this more conceptual work, and will enable studies in the PFA framework.
  - To get the full benefit need some more segmented ECAL layers (eg. MAPS or analog Si-strips). MAPS based ECAL layers are well matched to this application !
- Re-visit (and write up) "matching problem" pairing up photons in hadronic events.

| - (Old results 16%/√E → 12%/√E ) (9.4%)

## **Conclusions and Outlook**

- Kinematic fitting works
  - Detector designs should take advantage.
- Excellent angular resolution for photons can lead to much improved resolution on EM component of hadronic jets (and knowledge of the error).
- Measuring very well some jets (those without neutral hadrons), and knowing the resolution, will be advantageous in some physics analyses.

# **Backup Slides**

## $\pi^0$ mass resolution

• Can show that for  $\sigma_E / E = c_1 / \sqrt{E}$  that  $\Delta m/m = c_1 / \sqrt{[(1-a^2) E_{\pi 0}]} \oplus 3.70 \Delta \psi_{12} E_{\pi 0} \sqrt{(\beta^2 - a^2)}$ where  $a = \beta \cos \theta^* = (E_1 - E_2) / E_{\pi 0}$ 

So the mass resolution has 2 terms :

i) depending on the EM energy resolution  $(c_1)$ 

ii) depending on the opening angle resolution ( $\Delta \psi_{12}$ )

The relative importance of each depends on  $(E_{\pi 0}, a)$ 

# $\pi^0$ mass resolution

Plots assume:  $c_1 = 0.16$  (SiD)  $\Delta \psi_{12} = 2$  mrad

For these detector resolutions, 5  $GeV \pi^0$  mass resolution dominated by the E term



#### pi0 mass resolution contributions

## **Recent Improvements**

- Blobel numerical fitter in DP in addition to analytic fit (both F77 for now)
  - consistent
- Technical details
  - $\cos \theta^* = (1/\beta) (E_1 E_2) / E_{\pi^0}$
  - Error truncation for low energies : avoid -ve energies ...
  - Using simulated error rather than measured error
  - Now have *perfect* probability and pull distributions
- Error propagation after kinematic fit
  - Demonstration that for each  $\pi^0$  in the event, we could not only improve the  $\pi^0$  energy resolution but would also **know the error**.

#### 20 GeV $\pi^0$

Use single  $\pi^0$  toy MC with Gaussian smearing for studies.

*Energy resolution per photon* = $16\%/\sqrt{E}$ .

*Error on*  $\psi_{12}=0.5$  *mrad.* 

These resolutions used unless otherwise stated.



A rare thing: a really flat probability distribution !!!



$$Pull = (x_{fit} - x_{meas}) / \sqrt{(\sigma_{meas}^2 - \sigma_{fit}^2)}$$

Pull distributions consistent with unit Gaussian as expected.

*Note: each variable has an identical pull per event, since they were constructed to be symmetric.* {  $z_{12} = 2(1 - \cos \psi_{12})$  }



Measured pi0 energy pull cf gen



Fitted pi0 energy pull cf gen

=> You should also be able to believe the errors on the fitted energies of each  $\pi^0$ 

Fitted pi0 energy Pull cf measured

3. Results on  $\pi^0$  Energy **Resolution Improvement** For the Proof of Principle study there are: Two relevant  $\pi^0$  kinematic parameters: i) E ( $\pi^0$ ) ii)  $\cos\theta^*$  (cosine of CM decay angle)

And two relevant detector parameters:
i) Photon fractional energy resolution
(ΔE/E)
ii) Operating angle resolution (Δy/A)



#### DRAMATIC IMPROVEMENT

But this plot is not really a good representation of what is going on.



From now on, will use the  $\pi^0$  energy error ratio (fitted/measured) as the estimator of the improvement.

Call this the improvement ratio.



pi0 energy error fitted / measured

Very strong dependence of fit error on  $\cos\theta^*$ . Symmetric decay ( $\cos\theta^*=0$ ) is best



Improvement by up to a factor of 7 ! On average, factor of 2.

Improves by a factor of 1.3 on average.

Dependence on  $\pi^0$  energy





This slide has been corrected from that presented at Vancouver

## 5 GeV $\pi^0$

Average improvement factor not highly dependent on energy resolution.

BUT the maximum possible improvements increase as the energy resolution is degraded.

#### **Improvement Ratio Dependence on Energy Resolution**







 $E_{\pi^0}$  changes most when  $p_{fit}$  small.

(NB the constraint is correct, so low  $p_{fit}$  corresponds to  $\pi^0$ 's where typically the energy has fluctuated substantially)



Error on  $\pi^0$ energy is independent of  $p_{fit}$ 

Hard edges correspond to low |cosθ\*|

## **Kinematic Fitting Summary**

- Proof of principle of kinematic fit for  $\pi^0$  reconstruction done.
  - Kinematic fit infrastructure now a solid foundation.
  - Well understood errors on each  $\pi^0$ .
- Potential for a factor of two improvement in the energy resolution of the EM component of hadronic jets.

# 4. Towards applying to hadronic jets

- Detector response
- Characterize the multi-photon issues in Z → uu, dd, ss events.
  - Define prompt photons as originating within 10 cm of the origin
    - (NB differs from standard  $c\tau < 10$  cm definition)

## **Angular Resolution Studies**

5 GeV photon at 90°, sidmay05 detector (4 mm pixels, R=1.27m)

Phi resolution of 0.9 mrad *just* using cluster CoG.

=>  $\theta_{12}$  resolution of 2 mrad is easily achievable for spatially resolved photons.



NB. Previous study (see backup slide), shows that a factor of 5 improvement in resolution is possible at fixed R using longitudinally weighted "track-fit".

## **Cluster Mass for Photons**



Of course, photons actually have a mass of zero. The transverse spread of the shower leads to a non-zero cluster mass calculated from each cell.

Cluster Mass (GeV)

Use to distinguish single photons from merged  $\pi^0$ 's. Performance depends on detector design (R,  $R_M$ , B, cell-size, ...)

![](_page_51_Figure_0.jpeg)

NB generator has ISR and beamsstrahlung turned off.

Prompt pi0 count

![](_page_52_Figure_0.jpeg)

## On average, 1.4 GeV (1.5%)

## **Photon Accounting**

![](_page_53_Figure_1.jpeg)

cf 19.2 GeV from prompt  $\pi^0$ 

Intrinsic *prompt* photon combinatorial background in  $m_{\gamma\gamma}$  distribution assuming perfect resolution, and requiring  $E_{\gamma} > 1$  GeV.

With decent resolution, the combinatoric background looks manageable:

0.09 combinations / 10 MeV/event ( $\pi^0$ ),

0.06 combinations/10 MeV/event ( $\eta$ ).

Especially if one adopts a strategy of finding the most energetic and/or symmetric DK ones first.

![](_page_54_Figure_5.jpeg)

Next step: play with some algorithms

## Position resolution from simple fit

#### Neglect layer 0 (albedo)

Using the first 12 layers with hit with E>180 keV, combine the measured C of G from each layer using a least-squares fit (errors varying from 0.32mm to 4.4mm) Iteratively drop up to 5 layers in the "track fit".

Position resolution does indeed improve by a factor of **5** in a realistic 100% efficient algorithm!

![](_page_55_Figure_4.jpeg)

## PFA "Dalitz" Plot

Also see: <u>http://heplx3.phsx.ku.edu/~graham/lcws05\_slacconf\_gwwilson.pdf</u>

"On Evaluating the Calorimetry Performance of Detector Design Concepts", for an alternative detector-based view of what we need to be doing.

![](_page_56_Figure_3.jpeg)

On average, photonic energy only about 30%, but often much greater.

# $\gamma$ , $\pi^0$ , $\eta^0$ rates measured at LEP

|                        |                   | JETSET            | HERWIG        |                 |       |       |
|------------------------|-------------------|-------------------|---------------|-----------------|-------|-------|
|                        | OPAL              | ALEPH [6]         | DELPHI [9]    | L3 [10–12]      | 7.4   | 5.9   |
| photon                 |                   |                   |               |                 |       |       |
| $x_E$ range            | 0.003 - 1.000     | 0.018 - 0.450     |               |                 |       |       |
| $N_{\gamma}$ in range  | $16.84 \pm 0.86$  | $7.37 \pm 0.24$   |               |                 |       |       |
| $N_{\gamma}$ all $x_E$ | $20.97 \pm 1.15$  |                   |               |                 | 20.76 | 22.65 |
| $\pi^0$                |                   |                   |               |                 |       |       |
| $x_E$ range            | 0.007 - 0.400     | 0.025 - 1.000     | 0.011 - 0.750 | 0.004 - 0.150   |       |       |
| $N_{\pi^0}$ in range   | $8.29 \pm 0.63$   | $4.80 \pm 0.32$   | $7.1 \pm 0.8$ | $8.38\pm0.67$   |       |       |
| $N_{\pi^0}$ all $x_E$  | $9.55 \pm 0.76$   | $9.63 \pm 0.64$   | $9.2 \pm 1.0$ | $9.18\pm0.73$   | 9.60  | 10.29 |
| η                      |                   |                   |               |                 |       |       |
| $x_E$ range            | 0.025 - 1.000     | 0.100-1.000       |               | 0.020 - 0.300   |       |       |
| $N_{\eta}$ in range    | $0.79 \pm 0.08$   | $0.282 \pm 0.022$ |               | $0.70\pm0.08$   |       |       |
| $N_{\eta}$ all $x_E$   | $0.97 \pm 0.11$   |                   |               | $0.91 \pm 0.11$ | 1.00  | 0.92  |
| $N_{\eta} x_p > 0.1$   | $0.344 \pm 0.030$ | $0.282 \pm 0.022$ |               |                 | 0.286 | 0.243 |

Consistent with JETSET tune where 92% of photons come from  $\pi^0$ 's. Some fraction is non-prompt, from K<sup>0</sup><sub>S</sub>, Λ decay
9.6 π<sup>0</sup> per event at Z pole